Difference between revisions of "Statistical Algorithms Importer: Create Project"

From Gcube Wiki
Jump to: navigation, search
(Input)
 
(21 intermediate revisions by 3 users not shown)
Line 3: Line 3:
 
|}
 
|}
 
   
 
   
:This page explains how to create a project using Statistical Algorithms Importer(SAI) portlet.
+
:This page explains how to create a project using [[Statistical_Algorithms_Importer|Statistical Algorithms Importer (SAI)]] portlet.
  
==Project Folder==
 
:The fist step is to create or select an empty folder on the e-Infrastructure Workspace. Then, using the Create Project button in the main menu, the system creates an empty project in that folder.
 
  
[[Image:StatisticalAlgorithmsImporter_CreateProject.png|thumb|center|800px|Create Project, SAI]]
+
== SAI Project Type ==
 +
[[Image:StatisticalAlgorithmsImporter_CreateNewProject.png|thumb|center|800px|Create Project, SAI]]
  
==Import Resources==
+
:The fist step is to select the project type. Then, using the Create Project button in the main menu SAI allows to create different project type:
:Any resource needed to run the script can be imported in the Project Folder. Resources cab be added either via the Workspace or using the Add Resource button in main menu, or dragging and dropping files in the folder window.
+
[[Image:StatisticalAlgorithmsImporter_AddResource.png|thumb|center|800px|Add Resource, SAI]]
+
  
:Thus, if the resource is on the user's local file system, (s)he can use the Drag and Drop facility, working also with multiple files.
+
* [[Statistical Algorithms Importer: R Project|R Project]]
 +
* [[Statistical Algorithms Importer: R-blackbox Project|R-blackbox Project]]
 +
* [[Statistical Algorithms Importer: Java Project|Java Project]]
 +
* [[Statistical Algorithms Importer: Knime-Workflow Project|Knime-Workflow Project]]
 +
* [[Statistical Algorithms Importer: Linux-compiled Project|Linux-compiled Project]]
 +
* [[Statistical Algorithms Importer: Octave Project|Octave Project]]
 +
* [[Statistical Algorithms Importer: Python Project|Python Project]]
 +
* [[Statistical Algorithms Importer: Windows Project|Windows Project]]
 +
* [[Statistical Algorithms Importer: Pre-Installed Project|Pre-Installed Project]]
  
[[Image:StatisticalAlgorithmsImporter_ProjectExplorerDND.png|thumb|center|800px|Adding resources with Drag and Drop, SAI]]
+
:Please, read our best practices: [[Statistical Algorithms Importer: FAQ|F.A.Q.]]
  
==Import Resources From GitHub==
+
== Docker Support ==
:If you have a project on GitHub, you can import it into SAI. After creating a new project, just click the menu button on GitHub.
+
:SAI and DataMiner support the execution of Docker images on D4Science, for more information see the wiki available at this page:
 +
* [[Statistical Algorithms Importer: Docker Support|Statistical Algorithms Importer: Docker Support]]
  
[[Image:StatisticalAlgorithmsImporter_GitHubMenu.png|thumb|center|800px|GitHub on Menu, SAI]]
+
== Installed Software ==
 +
:A list of pre-installed software on the infrastructure machines is available at this page:
 +
* [[Pre Installed Packages|Pre Installed Packages]]
  
:You may access the GitHub Connector wizard. Please, read here to see how to use it: [[GitHub Connector|GitHub Connector]]
 
 
==Set Main Code==
 
:After adding the scripts and resources, one of the script files should be indicated as Main code. The e-Infrastructure will run this code, which is supposed to import and orchestrate the other scripts. Indicating a script as Main code can be done by clicking the Set Main button in Project Explorer. The file will be loaded in the Editor. In this phase the system also reads possible annotations inside the script (e.g. WPS4R annotations). At this point, the user can change the code and save it using the Save button on the Editor panel. Alternatively, the user can also use Copy and Paste by writing the code directly in the editor and then save it, still using the Save button in Editor menu (A file name will be requested).
 
 
[[Image:StatisticalAlgorithmsImporter_MainCodeFull.png|thumb|center|800px|Set Main Code facility, SAI]]
 
 
==Input==
 
:In this area the system collects all the information required by the system to create software for the e-Infrastructure and communicate with the e-Infrastructure team. Metadata, input/output information, global parameters and required packages are collected here.
 
 
===Global Variables===
 
:In this panel you can add any Global Variable that are used by the script as pre-requisite.
 
[[Image:StatisticalAlgorithmsImporter_AbsenceSpecies_GlobalV.png|thumb|center|800px|Global Variables indication, SAI]]
 
 
===Input/Output===
 
:In this area, selected input and output from the script is collected. In order to add a new I/O, the user should select a row in the code (from the the Editor) and than click the +Input (or +Output) button in the Menu Editor.
 
A new row is added to the Input/Output list. The system parses the code behind the scenes and guesses the best type, description and name of the parameter. Once a row has been created in the Input/Output window, the user can change information by clicking on the row. At least one input is required for compiling the project. '''The name of the input variable and the default value should not be changed unless a parsing error occurred'''. The reason is that the infrastructure will discover the variables inside the script by using the name and the default value.
 
 
'''Note: as a general rule, always set a default value for a variable, otherwise the execution of the algorithm may be compromised. Thus, do not use empty strings as default values.'''
 
 
[[Image:StatisticalAlgorithmsImporter_AbsenceSpecies_InputOutput.png|thumb|center|800px|Input/Output window, SAI]]
 
 
 
===Advanced Input===
 
It is possible to indicate spatial inputs or time/date inputs. The details for the definition of these dare are reported in the [[Statistical Algorithms Importer: Advanced Input| Advanced Input ]]
 
 
===Interprer Info===
 
:You can add Version and Packages information in the Interpreter Info panel. The version number is mandatory for the project. Here, for example, a user should specify the version of the R interpreter and the packages needed to run the script. These will be installed on the e-Infrastructure machines during the first deployment session.
 
 
[[Image:StatisticalAlgorithmsImporter_AbsenceSpecies_InterpreterInfo.png|thumb|center|800px|Interpreter Info, SAI]]
 
 
===Project Info===
 
:A name and a description of the project are mandatory. These will be displayed to the user of the e-Infrastructure and should also contain proper citation of the algorithm. Special characters are not allowed for the algorithm name. The user can include a list of the VREs this algorithm should be visible to.
 
[[Image:StatisticalAlgorithmsImporter_AbsenceSpecies_ProjectInfo.png|thumb|center|800px|Project Info, SAI]]
 
 
==Save Project==
 
:You can save project by click on Save button in main menu. A file called stat_algo.project is add to Project Folder.
 
[[Image:StatisticalAlgorithmsImporter_AbsenceSpecies_SaveProject.png|thumb|center|800px|Save Project, SAI]]
 
 
 
==Using WPS4R Annotations==
 
:SAI automatically parses R code containing [https://wiki.52north.org/bin/view/Geostatistics/WPS4R WPS4R annotations], the system automatically transforms annotations into Input/Output panel and Project Info panel information. The name of algorithm is mandatory in the annotations. We report a full example of annotated algorithm and attach the complete algorithm in a zip package:
 
 
<pre style="display:block;font-family:monospace;white-space:pre;margin:1em 0;">
 
############################################################################################################################
 
############# Absence Generation Script - Gianpaolo Coro and Chiara Magliozzi, CNR 2015, Last version 06-07-2015 ###########
 
############################################################################################################################
 
 
#52North WPS annotations
 
# wps.des: id = Absence_generation_from_OBIS, title = Absence_generation_from_OBIS, abstract = A script to estimate absence records from OBIS;
 
 
rm(list=ls(all=TRUE))
 
graphics.off()
 
 
## charging the libraries
 
library(DBI)
 
library(RPostgreSQL)
 
library(raster)
 
library(maptools)
 
 
# time
 
t0<-Sys.time()
 
 
## parameters
 
# wps.in: id = list, type = text/plain, title = list of species beginning with the speciesname header,value="species.txt";
 
list= "species.txt"
 
specieslist<-read.table(list,header=T,sep=",") # my short dataset 2 species
 
#attach(specieslist)
 
# wps.in: id = res, type = double, title = resolution of the analysis,value=1;
 
res=1;
 
extent_x=180
 
extent_y=90
 
n=extent_y*2/res;
 
m=extent_x*2/res;
 
# wps.in: id = occ_percentage, type = double, title = percentage of observations occurrence of a viable survey,value=0.1;
 
occ_percentage=0.1 #between 0 and 1
 
 
#uncomment for time filtering
 
 
#No time filter
 
TimeStart<-"";
 
TimeEnd<-"";
 
 
TimeStart<-gsub("(^ +)|( +$)", "",TimeStart)
 
TimeEnd<-gsub("(^ +)|( +$)", "", TimeEnd)
 
 
## opening the connection with postgres
 
cat("Opening the connection with the catalog\n")
 
drv <- dbDriver("PostgreSQL")
 
con <- dbConnect(drv, dbname="", host="", port="5432", user="", password="")
 
 
cat("Analyzing the list of species\n")
 
counter=0;
 
overall=length(specieslist$scientificname)
 
 
cat("Extraction from the different contributors the total number of obs per resource id...\n")
 
 
timefilter<-""
 
if (nchar(TimeStart)>0 && nchar(TimeEnd)>0)
 
  timefilter<-paste(" where datecollected>'",TimeStart,"' and datecollected<'",TimeEnd,"'",sep="");
 
 
queryCache <- paste("select drs.resource_id, count(distinct position_id) as allcount from obis.drs", timefilter, " group by drs.resource_id",sep="")
 
cat("Resources extraction query:",queryCache,"\n")
 
 
allresfile="allresources.dat"
 
if (file.exists(allresfile)){
 
  load(allresfile)
 
} else{
 
  allresources1<-dbGetQuery(con,queryCache)
 
  save(allresources1,file=allresfile)
 
}
 
 
files<-vector()
 
f<-0
 
dir.create("data")
 
 
for (sp in specieslist$scientificname){
 
  f<-f+1
 
  t1<-Sys.time()
 
  graphics.off()
 
  grid=matrix(data=0,nrow=n,ncol=m)
 
  gridInfo=matrix(data="",nrow=n,ncol=m)
 
  outputfileAbs=paste("data/Absences_",sp,"_",res,"deg.csv",sep="");
 
  outputimage=paste("data/Absences_",sp,"_",res,"deg.png",sep="");
 
 
 
  counter=counter+1;
 
  cat("analyzing species",sp,"\n")
 
  cat("***Species status",counter,"of",overall,"\n")
 
 
 
  ## first query: select the species
 
  cat("Extraction the species id from the OBIS database...\n")
 
  query1<-paste("select id from obis.tnames where tname='",sp,"'", sep="")
 
  obis_id<- dbGetQuery(con,query1)
 
  cat("The ID extracted is ", obis_id$id, "for the species", sp, "\n", sep=" ")
 
 
 
  if (nrow(obis_id)==0) {
 
    cat("WARNING: there is no reference code for", sp,"\n")
 
    next;
 
  }
 
 
 
  ## second query: select the contributors
 
  cat("Selection of the contributors in the database having recorded the species...\n")
 
  query2<- paste("select distinct resource_id from obis.drs where valid_id='",obis_id$id,"'", sep="")
 
  posresource<-dbGetQuery(con,query2)
 
 
 
  if (nrow(posresource)==0) {
 
    cat("WARNING: there are no resources for", sp,"\n")
 
    next;
 
  }
 
 
 
 
 
  ## third query: select from the contributors different observations
 
  merge(allresources1, posresource, by="resource_id")-> res_ids
 
 
 
  ## forth query: how many obs are contained in each contributors for the species
 
  cat("Extraction from the different contributors the number of obs for the species...\n")
 
  query4 <- paste("select drs.resource_id, count(distinct position_id) as tgtcount from obis.drs where valid_id='",obis_id,"'group by drs.resource_id ",sep="")
 
  tgtresources1<-dbGetQuery(con,query4)
 
  merge(tgtresources1, posresource, by="resource_id")-> tgtresourcesSpecies
 
 
 
  ## fifth query: select contributors that has al least 0.1 observation of the species
 
  #### we have the table all together: contributors, obs in each contributors for at leat one species and obs of the species in each contributors
 
  cat("Extracting the contributors containing more than 10% of observations for the species\n")
 
  tmp <- merge(res_ids, tgtresourcesSpecies, by= "resource_id",all.x=T)
 
  tmp["species_10"] <- NA
 
  tmp$tgtcount / tmp$allcount -> tmp$species_10
 
 
 
  viable_res_ids <- subset(tmp,species_10 >= occ_percentage, select=c("resource_id","allcount","tgtcount", "species_10"))
 
  #cat(viable_res_ids)
 
 
 
  if (nrow(viable_res_ids)==0) {
 
    cat("WARNING: there are no viable points for", sp,"\n")
 
    next;
 
  }
 
 
 
  numericselres<-paste("'",paste(as.character(as.numeric(t(viable_res_ids["resource_id"]))),collapse="','"),"'",sep="")
 
 
 
  ## sixth query: select all the cell at 0.1 degrees resolution in the main contributors
 
  cat("Select the cells at 0.1 degrees resolution for the main contributors\n")
 
  query6 <- paste("select position_id, positions.latitude, positions.longitude, count(*) as allcount ",
 
                  "from obis.drs ",
 
                  "inner join obis.tnames on drs.valid_id=tnames.id ",
 
                  "inner join obis.positions on position_id=positions.id ",
 
                  "where resource_id in (", numericselres,") ",
 
                  "group by position_id, positions.latitude, positions.longitude, resource_id")
 
  all_cells <- dbGetQuery(con,query6)
 
 
 
  ## seventh query:  select all the cell at 0.1 degrees resolution in the main contributors for the selected species
 
  cat("Select the cells at 0.1 degrees resolution for the species in the main contributors\n")
 
  query7 <- paste("select position_id, positions.latitude, positions.longitude, count(*) as tgtcount ",
 
                  "from obis.drs",
 
                  "inner join obis.tnames on drs.valid_id=tnames.id ",
 
                  "inner join obis.positions on position_id=positions.id ",
 
                  "where resource_id in (", numericselres,") ",
 
                  "and drs.valid_id='",obis_id,"'",
 
                  "group by position_id, positions.latitude, positions.longitude")
 
  presence_cells<-dbGetQuery(con,query7)
 
 
 
  ## last query: for every cell in the sixth query if there is a correspondent in the seventh query I can put 1 otherwise 0
 
  data.df<-merge(all_cells, presence_cells, by= "position_id",all.x=T)
 
  data.df$longitude.y<-NULL
 
  data.df$latitude.y<-NULL
 
  data.df[is.na(data.df)] <- 0
 
 
 
  ######### Table resulting from the analysis
 
  pres_abs_cells <- subset(data.df,select=c("latitude.x","longitude.x", "tgtcount","position_id"))
 
  positions<-paste("'",paste(as.character(as.numeric(t(pres_abs_cells["position_id"]))),collapse="','"),"'",sep="")
 
 
 
  query8<-paste("select position_id, resfullname,digirname,abstract,temporalscope,date_last_harvested",
 
                "from ((select distinct position_id,resource_id from obis.drs where position_id IN (", positions,
 
                ") order by position_id ) as a",
 
                "inner join (select id,resfullname,digirname,abstract,temporalscope,date_last_harvested from obis.resources where id in (",
 
                numericselres,")) as b on b.id = a.resource_id) as d")
 
 
 
  resnames<-dbGetQuery(con,query8)
 
  #sorting data df
 
  pres_abs_cells<-pres_abs_cells[with(pres_abs_cells, order(position_id)), ]
 
 
 
  nrows = nrow(pres_abs_cells)
 
  ######## FIRST Loop inside the rows of the dataset
 
  cat("Looping on the data\n")
 
  for(i in 1: nrows) {
 
    lat<-pres_abs_cells[i,1]
 
    long<-pres_abs_cells[i,2]
 
    value<-pres_abs_cells[i,3]
 
    resource_name<-paste("\"",paste(as.character(t(resnames[i,])),collapse="\",\""),"\"",sep="")#resnames[i,2]
 
    k=round((lat+90)*n/180)
 
    g=round((long+180)*m/360)
 
    if (k==0) k=1;
 
    if (g==0) g=1;
 
    if (k>n || g>m)
 
      next;
 
    if (value>=1){
 
      if (grid[k,g]==0){
 
        grid[k,g]=1
 
        gridInfo[k,g]=resource_name
 
      }
 
      else if (grid[k,g]==-1){
 
        grid[k,g]=-2
 
        gridInfo[k,g]=resource_name
 
      }
 
    }
 
    else if (value==0){
 
      if (grid[k,g]==0){
 
        grid[k,g]=-1
 
        #cat("resource abs",resource_name,"\n")
 
        gridInfo[k,g]=resource_name
 
      }
 
      else if (grid[k,g]==1){
 
        grid[k,g]=-2
 
        gridInfo[k,g]=resource_name
 
      }
 
     
 
    }
 
  }
 
  cat("End looping\n")
 
 
 
  cat("Generating image\n")
 
  absence_cells<-which(grid==-1,arr.ind=TRUE)
 
  presence_cells_idx<-which(grid==1,arr.ind=TRUE)
 
  latAbs<-((absence_cells[,1]*180)/n)-90
 
  longAbs<-((absence_cells[,2]*360)/m)-180
 
  latPres<-((presence_cells_idx[,1]*180)/n)-90
 
  longPres<-((presence_cells_idx[,2]*360)/m)-180
 
  resource_abs<-gridInfo[absence_cells]
 
 
 
  absPoints <- cbind(longAbs, latAbs)
 
  absPointsData <- cbind(longAbs, latAbs,resource_abs)
 
 
 
  if (length(absPoints)==0)
 
  {
 
    cat("WARNING no viable point found for ",sp," after processing!\n")
 
    next;
 
  }
 
  data(wrld_simpl)
 
  projection(wrld_simpl) <- CRS("+proj=longlat")
 
  png(filename=outputimage, width=1200, height=600)
 
  plot(wrld_simpl, xlim=c(-180, 180), ylim=c(-90, 90), axes=TRUE, col="black")
 
  box()
 
  pts <- SpatialPoints(absPoints,proj4string=CRS(proj4string(wrld_simpl)))
 
 
 
  ## Find which points do not fall over land
 
  cat("Retreiving the poing that do not fall on land\n")
 
  pts<-pts[which(is.na(over(pts, wrld_simpl)$FIPS))]
 
  points(pts, col="green", pch=1, cex=0.50)
 
  datapts<-as.data.frame(pts)
 
  colnames(datapts) <- c("longAbs","latAbs")
 
 
 
  abspointstable<-merge(datapts, absPointsData, by.x= c("longAbs","latAbs"), by.y=c("longAbs","latAbs"),all.x=F)
 
 
 
 
 
  header<-"longitude,latitude,resource_id,resource_name,resource_identifier,resource_abstract,resource_temporalscope,resource_last_harvested_date"
 
  write.table(header,file=outputfileAbs,append=F,row.names=F,quote=F,col.names=F)
 
 
 
  write.table(abspointstable,file=outputfileAbs,append=T,row.names=F,quote=F,col.names=F,sep=",")
 
  files[f]<-outputfileAbs
 
  cat("Elapsed:  created imaged in ",Sys.time()-t1," sec \n")
 
  graphics.off()
 
}
 
 
# wps.out: id = zipOutput, type = text/zip, title = zip file containing absence records and images;
 
zipOutput<-"absences.zip"
 
zip(zipOutput, files=c("./data"), flags= "-r9X", extras = "",zip = Sys.getenv("R_ZIPCMD", "zip"))
 
 
cat("Closing database connection")
 
cat("Elapsed:  overall process finished in ",Sys.time()-t0," min \n")
 
dbDisconnect(con)
 
graphics.off()
 
 
</pre>
 
[[File:AbsencesSpeciesList_prod_annotated.zip|AbsencesSpeciesList_prod_annotated.zip]]
 
 
 
:The following screenshot report the result of importing this script into SAI:
 
 
[[Image:StatisticalAlgorithmsImporter_AbsenceSpecies_Annotations_Info.png|thumb|center|800px|Annotations Project Info, SAI]]
 
[[Image:StatisticalAlgorithmsImporter_AbsenceSpecies_Annotations_InputOutput.png|thumb|center|800px|Annotations Input/Output, SAI]]
 
  
 
<!--
 
<!--

Latest revision as of 08:51, 22 September 2020

This page explains how to create a project using Statistical Algorithms Importer (SAI) portlet.


SAI Project Type

Create Project, SAI
The fist step is to select the project type. Then, using the Create Project button in the main menu SAI allows to create different project type:
Please, read our best practices: F.A.Q.

Docker Support

SAI and DataMiner support the execution of Docker images on D4Science, for more information see the wiki available at this page:

Installed Software

A list of pre-installed software on the infrastructure machines is available at this page: