

Open Geospatial Consortium Inc.

Date: 2007-06-08

Reference number of this document: OGC 05-007r7

Version: 1.0.0

Category: OpenGIS
®

Standard

Editor: Peter Schut

OpenGIS
®
 Web Processing Service

Copyright © 2007 Open Geospatial Consortium, Inc All Rights Reserved

To obtain additional rights of use, visit http://www.opengeospatial.org/legal/

Document type: OGC Publicly Available Standard

Document Subtype: OGC Standard

Document stage: Approved

Document language: English

ii Copyright © 2012 Open Geospatial Consortium

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below,
to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property
without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish,
distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to
do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above
copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS
THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF
INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY
DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH
THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all
copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as
provided in the following sentence, no such termination of this license shall require the termination of any third party end-user
sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual
Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent,
copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or
cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual
Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without
prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any
LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United
Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any provision of this
Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as to make it valid and enforceable,
and as so modified the entire Agreement shall remain in full force and effect. No decision, action or inaction by LICENSOR shall be
construed to be a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise exported or reexported in
violation of U.S. export laws and regulations. In addition, you are responsible for complying with any local laws in your jurisdiction
which may impact your right to import, export or use the Intellectual Property, and you represent that you have complied with any
regulations or registration procedures required by applicable law to make this license enforceable

OGC 05-007r7

ii Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Warning

OGC official documents use a triple decimal-dot notation (i.e. MM.xx.ss). This document

may be identified as MM.xx (Major.minor) and may include increments to the third dot series

(schema changes) without any modification to this document, or the version displayed on the

document. This means, for example, that a document labelled with versions 1.1.0 and 1.1.1 or

even 1.1.9 are exactly the same except for modifications to the official schemas that are

maintained and perpetually located at: http://schemas.opengis.net/. Note that corrections to

the document are registered via corrigendums. A corrigendum will change the base

document and notice will be given by appending a c# to the version (where # specifies the

corrigendum number). In corrigendums that correct both the schemas and the base

document, the third triplet of the document version will increment and the ‗c1‘ or subsequent

identifier will be appended, however the schemas will only increase the third triplet of the

version.

This document is an OGC Standard. Recipients of this document are invited to submit,

with their comments, notification of any relevant patent rights of which they are aware

and to provide supporting documentation.

http://schemas.opengis.net/

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. iii

Contents Page

i. Preface.. ix

ii. Document terms and definitions .. ix

iii. Submitting organizations ... ix

iv. Document contributor contact points ...x

v. Revision history ...x

vi. Changes to the OGC Abstract Specification .. xi

vii. Future work .. xi

Foreword ... xii

Introduction .. xiii

1 Scope ..1

2 Conformance ..1

3 Normative references ...1

4 Terms and definitions ..2

5 Conventions ...3

5.1 Abbreviated terms ...3
5.2 UML notation ..3
5.3 Used parts of other documents ..3

5.4 Platform-neutral and platform-specific specifications ..3

6 WPS overview ...4
6.1 WPS Operations ..4
6.2 Generic nature of WPS ..5

6.3 Middleware nature of WPS ...6
6.4 WPS Profiles ...6

6.5 Service chaining with WPS ...7
6.6 WPS and SOAP/WSDL ..7

7 Shared aspects ..9
7.1 Introduction ...9
7.2 Shared data structures ..9

7.3 Operation request encoding ...11

8 GetCapabilities operation (mandatory) ..11
8.1 Introduction ...11

8.2 GetCapabilities operation request ...11
8.2.1 HTTP GET request using KVP encoding (mandatory)12
8.2.2 GetCapabilities HTTP POST request using XML encoding (optional)12

8.3 GetCapabilities operation response ...12
8.3.1 Normal response ...12
8.3.2 OperationsMetadata section contents ...14
8.3.3 ProcessOfferings section ...14

OGC 05-007r7

iv Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

8.3.4 Languages section ...14
8.3.5 WSDL section ...15

8.3.6 Capabilities document XML encoding ...15
8.3.7 GetCapabilities exceptions..16

9 DescribeProcess operation (mandatory) ..16
9.1 Introduction ...16
9.2 DescribeProcess operation request ..16

9.2.1 DescribeProcess request parameters ...16

9.2.2 DescribeProcess HTTP GET request KVP encoding (mandatory)17
9.2.3 DescribeProcess HTTP POST request XML encoding (optional)18

9.3 DescribeProcess operation response ...18
9.3.1 DescribeProcess response parameters ...18
9.3.2 DescribeProcess response XML encoding ..29
9.3.3 DescribeProcess exceptions ..30

10 Execute operation (mandatory) ..30
10.1 Introduction ...30

10.2 Execute operation request ...31
10.2.1 Execute request parameters...31

10.2.2 Execute HTTP GET request KVP encoding (optional)38
10.2.2.1 Encoding of DataInput and Output values (mandatory)39
10.2.2.2 Chaining of requests using KVP (mandatory) ..40

10.2.3 Execute HTTP POST request XML encoding (mandatory)41
10.3 Execute operation response ...41

10.3.1 Execute response parameters ..41
10.3.2 Execute response XML encoding ...48

10.3.3 Execute exceptions..48

Annex A (normative) Abstract test suite ..50
A.1 Introduction ...50
A.2 Client test module ..51

A.2.1 GetCapabilities operation request ...51
A.2.1 DescribeProcess operation request ...51

A.2.2 Execute operation request ...51

A.3 Server test module ...51

A.4.1 All operations implemented test module ..51
A.4.1.1 HTTP protocol usage ..51
A.4.2 GetCapabilities operation test module ..52
A.4.3 DescribeProcess operation test module ..53
A.4.4 Execute operation test module ..54

Annex B (normative) XML Schema Documents..57

Annex C (informative) UML model ...59
C.1 Introduction ...59
C.2 UML packages ..60

C.3 WPS Service package ..61
C.4 WPS Get Capabilities package ..62
C.5 WPS Describe Process package ..63
C.6 WPS Execute package ...66

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. v

Annex D (normative) Use of WPS with SOAP ..69
D.1 Overview ...69

D.2 SOAP encoding of WPS requests and responses ..69

Annex E (informative) WSDL best practices ...71
E.1 Overview ...71
E.2 WSDL document for the entire service ...71
E.3 WSDL document for specific processes ...71
E.4 WSDL example for a complete service ...72

Bibliography ..73

OGC 05-007r7

vi Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Figures Page

Figure 1 — WPS interface UML diagram .. 5

Figure 2 — Activity diagram when client requests storage of results 31

Figure C.1 — WPS interface UML diagram .. 59

Figure C.3 — WPS Service package class diagram ... 61

Figure C.4 — WPS Get Capabilities package class diagram ... 62

Figure C.5 — Describe Process package class diagram, part 1 .. 63

Figure C.6 — Describe Process package class diagram, part 2 .. 64

Figure C.7 — Describe Process package class diagram, part 3 .. 65

Figure C.8 — Execute package class diagram, part 1 .. 66

Figure C.9 — Execute package class diagram, part 2 .. 67

Figure C.10 — Execute package class diagram, part 3 .. 68

Tables Page

Table 1 — Parameters in Description data structure .. 9

Table 2 — Parts of ProcessBrief data structure .. 10

Table 3 — Parts of WSDL data structure ... 10

Table 4 — Parts of Format data structure ... 10

Table 5 — Operation request encoding .. 11

Table 6 — Implementation of parameters in GetCapabilities operation request.............. 11

Table 7 —Parts of Capabilities document .. 13

Table 8 — Operations described in the OperationsMetadata section 14

Table 9 — Parts of ProcessOfferings section ... 14

Table 10 — Parts of Languages section ... 14

Table 11 —Language data structure ... 15

Table 12 — Parts of WSDL section ... 15

Table 13 — Parameters in DescribeProcess operation request .. 17

Table 14 — DescribeProcess operation request URL parameters 18

Table 15 — Parts of ProcessDescriptions data structure .. 21

Table 16 — Parts of ProcessDescription data structure.. 22

Table 17 — Parts of WSDL data structure ... 23

Table 18 — Parts of DataInputs data structure ... 23

Table 19 — Parts of InputDescription data structure ... 23

Table 20 — Parts of InputFormChoice data structure .. 24

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. vii

SupportedComplexData data structure, see .. 24

Table 21 — Parts of ComplexData data structure .. 24

Table 22 — Parts of Default Format data structure .. 25

Table 23 — Parts of Format data structure ... 25

Table 24 — Parts of Supported Format data structure ... 25

Table 25 — Parts of LiteralInput data structure ... 26

Table 26 — Parts of UOMs data structure .. 26

Table 27 — Parts of Default UOM data structure .. 26

Table 28 — Parts of Supported UOM data structure .. 26

Table 29 — Parts of LiteralValuesChoice data structure ... 27

Table 30 — Parts of ValuesReference data structure ... 27

Table 31 — Parts of SupportedCRSs data structure ... 27

Table 32 — Parts of Default CRS data structure .. 27

Table 33 — Parts of Supported CRS data structure ... 28

Table 34 — Parts of ProcessOutputs data structure .. 28

Table 35 — Parts of OutputDescription data structure ... 28

Table 36 — Parts of OutputFormChoice data structure ... 29

ComplexData data structure, see ... 29

Table 37 — Parts of LiteralOutput data structure ... 29

Table 38 — Exception codes for DescribeProcess operation ... 30

Table 39 — Parts of Execute operation request.. 32

Table 40 — Parts of DataInputs data structure ... 33

Table 41 — Parts of InputType data structure .. 33

Table 42 — Parts of InputDataFormChoice data structure .. 33

Table 43 — Parts of InputReference data structure .. 34

Table 44 — Parts of Header data structure ... 34

Table 45 — Parts of BodyReference data structure.. 34

Table 46 — Parts of DataType data structure ... 35

Table 47 — Parts of ComplexData data structure .. 35

Table 48 — Parts of LiteralData data structure .. 35

Table 49 — Parts of ResponseForm data structure .. 36

Table 50 — Parts of ResponseDocument data structure .. 36

Table 51 — Parts of DocumentOutputDefinition data structure 37

Table 52 — Parts of RawDataOutput data structure .. 37

Table 53 — Execute operation request URL parameters ... 38

Table 54 — Parts of ExecuteResponse data structure .. 44

Table 55 — Parts of Status data structure ... 45

OGC 05-007r7

viii Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Table 56 — Parts of ProcessStarted data structure ... 46

Table 57 — Parts of ProcessFailed data structure .. 46

Table 58 — Parts of OutputDefinitions data structure ... 46

Table 59 — Parts of ProcessOutputs data structure .. 46

Table 60 — Parts of OutputData data structure .. 47

Table 61 — Parts of OutputReference data structure ... 47

Table 62 — Exception codes for Execute operation .. 49

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. ix

i. Preface

This document specifies the interface to a Web Processing Service (WPS). This

document is the result of work undertaken to support the Canadian Geospatial Data

Infrastructure (CGDI), and in particular the National Land and Water Information Service

(NLWIS), and the National Forest Information Service (NFIS). The specification was

first implemented as a prototype in 2004 by Agriculture and Agri-Food Canada (AAFC).

In the first half of 2005, it was the subject of a successful OGC Interoperability

Experiment.

Suggested additions, changes, and comments on this recommendation paper are welcome

and encouraged. Such suggestions may be submitted by email message or by making

suggested changes in an edited copy of this document.

ii. Document terms and definitions

This document uses the specification terms defined in Subclause 5.3 of [OGC 06-121r3],

which is based on the ISO/IEC Directives, Part 2. Rules for the structure and drafting of

International Standards. In particular, the word ―shall‖ (not ―must‖) is the verb form used

to indicate a requirement to be strictly followed to conform to this specification

iii. Submitting organizations

The following organizations submitted this document to the Open Geospatial Consortium

Inc.

GeoConnections / Natural Resources Canada

PCI Geomatics

OGC 05-007r7

x Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

iv. Document contributor contact points

All questions regarding this document should be directed to the editor or the WPS

Revision Working Group contributors:

Name Organization

Theodor Förster ITC

Christian Heier Wupperverband

Steven Keens PCI Geomatics

Christian Kiehle lat/lon GmbH

Rachel ONeil ESRI Canada

Nicole Ostlaender Joint Research Centre (JRC)

Joan Maso Pau Universitat Autònoma de Barcelona (CREAF)

Peter Schut GeoConnections

Arliss Whiteside BAE Systems - National Security Solutions

The Revision Working Group acknowledges the formative input to this specification

from the following contributors:

Name Organization

Mike Adair GeoConnections

Harald Borsutzky University of Muenster - Institute for Geoinformatics

Stephane Fellah PCI Geomatics

Xiaoyuan Geng GeoConnections

Martin Kyle Galdos Systems

Weisheng Li PCI Geomatics

Maru Newby GeoConnections

v. Revision history

Date Release Editor Primary clauses
modified

Description

05 May
2004

0.1.0 Peter.
Schut

All Initial document, formatted for OGC
template

22 May
2004

0.1.0 Peter
Schut

All Cleaned up some problems, added
informative examples in Annex B

21 Oct.
2004

0.2.0 Stephane
Fellah

Content Rewrite the schema and the Table of
Contents

22 Nov.
2004

0.2.0 Xiaoyuan
Geng

All Created document using the latest OGC
template, the initial draft, and schema

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. xi

Date Release Editor Primary clauses
modified

Description

24 Dec.
2004

0.2.1 Peter
Schut

All Minor corrections and revisions throughout,
additions of human readable explanations of
schemas

11 April
2005

0.2.3 Peter
Schut

All Upgrade based on results to date of WPSie.

05 April
2005

0.3.0 Peter
Schut

All Upgrade based on results to date of WPSie
and alignment with OWS Common

13 July
2005

0.4.0 Peter
Schut

6 & 7 Complete documentation of each element
and renaming of elements to eliminate
confusion caused by abstractions

1 Sept
2005

0.4.0 Arliss
Whiteside

All Added UML diagrams, aligned with new
schemas.

16 Sept
2005

0.4.0 Peter
Schut and
Arliss
Whiteside

All Final editing and cleanup for the WPS RFC

08 June
2007

1.0.0 Peter
Schut

All Complete rewrite based on comments
received in the WPS RFC and additional
change requests handled by the WPS RWG.

vi. Changes to the OGC Abstract Specification

The OpenGIS
®

Abstract Specification does not require changes to accommodate the

technical contents of this document.

vii. Future work

OGC 05-007r7

xii Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Foreword

The Web Processing Service (WPS) was originally named Geoprocessing Service (OGC

document number 04-043). The name was changed to "Web Processing Service" early in

its development to avoid the acronym GPS, since this would have caused confusion with

the conventional use of this acronym for Global Positioning System. Since WPS is an

OGC specification, the term geospatial would have been redundant. A version of WPS

was released in September 2005 as document number 05-007r4, and was the subject of an

OGC RFC. This document replaces those earlier draft documents.

The WPS Interoperability Experiment (see OGC document 05-051r1) demonstrated that

clients developed by different organizations could readily access and bind to services that

are set up in accordance with the WPS Implementation Specification. Version 1.0.0

incorporates the recommendations that were made during that Interoperability

Experiment and subsequent comments received through OGC‘s RFC process and the

subsequent OWS-4 test bed.

This document includes five annexes; Annexes A, B, and D are normative, while Annex

C and F are informative.

Attention is drawn to the possibility that some of the elements of this document may be

the subject of patent rights. The OGC shall not be held responsible for identifying any or

all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of

any relevant patent claims or other intellectual property rights of which they may be

aware that might be infringed by any implementation of the standard set forth in this

document, and to provide supporting documentation.

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. xiii

Introduction

This document specifies the interface to a Web Processing Service (WPS). WPS defines a

standardized interface that facilitates the publishing of geospatial processes, and the

discovery of and binding to those processes by clients. ―Processes‖ include any

algorithm, calculation or model that operates on spatially referenced data. ―Publishing‖

means making available machine-readable binding information as well as human-

readable metadata that allows service discovery and use.

A WPS can be configured to offer any sort of GIS functionality to clients across a

network, including access to pre-programmed calculations and/or computation models

that operate on spatially referenced data. A WPS may offer calculations as simple as

subtracting one set of spatially referenced numbers from another (e.g., determining the

difference in influenza cases between two different seasons), or as complicated as a

global climate change model. The data required by the WPS can be delivered across a

network, or available at the server.

This interface specification provides mechanisms to identify the spatially referenced data

required by the calculation, initiate the calculation, and manage the output from the

calculation so that the client can access it. This Web Processing Service is targeted at

processing both vector and raster data.

The WPS specification is designed to allow a service provider to expose a web accessible

process, such as polygon intersection, in a way that allows clients to input data and

execute the process with no specialized knowledge of the underlying physical process

interface or API. The WPS interface standardizes the way processes and their

inputs/outputs are described, how a client can request the execution of a process, and how

the output from a process is handled.

Because WPS offers a generic interface, it can be used to wrap other existing and planned

OGC services that focus on providing geospatial processing services.

OGC
®

Implementation Specification OGC 05-007r7

Copyright © Open Geospatial Consortium (2005) 1

OpenGIS
®
 Web Processing Service

1 Scope

This document specifies the interface to a general purpose Web Processing Service

(WPS). A WPS provides client access across a network to pre-programmed calculations

and/or computation models that operate on spatially referenced data. The calculation can

be extremely simple or highly complex, with any number of data inputs and outputs.

This document does not specify the specific processes that could be implemented by a

WPS. Instead, it specifies a generic mechanism that can be used to describe and web-

enable any sort of geospatial process. To achieve interoperability, each process must be

specified in a separate document, which might be called an Application Profile of this

specification.

This document does not specify any specific data required or output by the WPS.

Instead, it identifies a generic mechanism to describe the data inputs required and

produced by a process. This data can be delivered across the network, or available at the

server. This data can include image data formats such as GeoTIFF, or data exchange

standards such as Geography Markup Language (GML). Data inputs can be legitimate

calls to OGC web services. For example, a data input for an intersection operation could

be a polygon delivered in response to a WFS request, in which case the WPS data input

would be the WFS query string.

This document does not address the archival, cataloguing, discovery, or retrieval of

information that has been created by a WPS.

2 Conformance

Conformance with this specification shall be checked using all the relevant tests specified

in Annex A (normative).

3 Normative references

The following normative documents contain provisions that, through reference in this

text, constitute provisions of this document. For dated references, subsequent

amendments to, or revisions of, any of these publications do not apply. For undated

references, the latest edition of the normative document referred to applies.

ISO 19105:2000, Geographic information — Conformance and Testing

OGC 05-007r7

2 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

OGC 06-121r3, OpenGIS
®

Web Services Common Specification

This OWS Common Specification contains a list of normative references that are also

applicable to this Implementation Specification.

In addition to this document, this specification includes several normative XML Schema

Document files as listed in Annex B and referenced throughout the text. These XML

Schema Documents include complete documentation of the meaning of each element,

attribute, and type. These XML Schema Documents and the documentation contained

therein shall be considered normative as specified in Subclause 11.6.3 of [OGC 06-

121r3].

4 Terms and definitions

For the purposes of this specification, the definitions specified in Clause 4 of the OWS

Common Implementation Specification [OGC 06-121r3] shall apply. In addition, the

following terms and definitions apply.

4.1

input

data provided to a process

4.2

literal

any process input or output whose value can be represented in a character string,

supplemented by metadata as needed

4.3

literal (XML encoding)

any process input or output whose value can be represented in a xsd:string supplemented

by XML attributes as needed

NOTE A literal process input or output can be a character string, integer, general number, URI,
measure, etc.

4.4

map

pictorial representation of geographic data

4.5

process

model or calculation that is made available at a service instance

4.6

output

result returned by a process

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 3

5 Conventions

5.1 Abbreviated terms

Most of the abbreviated terms listed in Subclause 5.1 of the OWS Common

Implementation Specification [OGC 06-121r3] apply to this document, plus the following

abbreviated terms.

5.2 UML notation

Most diagrams that appear in this specification are presented using the Unified Modeling

Language (UML) static structure diagram, as described in Subclause 5.2 of [OGC 06-

121r3].

5.3 Used parts of other documents

This document uses significant parts of document [OGC 06-121r3]. To reduce the need to

refer to that document, this document copies some of those parts with small

modifications. To indicate those parts to readers of this document, the copied portions are

shown with a light grey background (15%).

5.4 Platform-neutral and platform-specific specifications

As specified in Clause 10 of OpenGIS
®

Abstract Specification Topic 12 ―OpenGIS

Service Architecture‖ (which contains ISO 19119), this document includes both

Distributed Computing Platform-neutral and platform-specific specifications. This

document first specifies each operation request and response in platform-neutral fashion.

This is done using a table for each data structure, which lists and defines the parameters

and other data structures contained. These tables serve as data dictionaries for the UML

model in Annex C, and thus specify the UML model data type and multiplicity of each

listed item.

EXAMPLES 1 Platform-neutral specifications are contained in Subclauses 8.3.1, 8.3.3, 9.2.1, 9.3.1, 10.2.1, 10.3.1,
and 10.3.2.

The specified platform-neutral data could be encoded in many alternative ways, each

appropriate to one or more specific DCPs. This document now specifies only encoding

appropriate for use of HTTP GET transfer of operations requests (using KVP encoding),

and for use of HTTP POST transfer of operations requests (using XML or KVP

encoding). However, the same operation requests and responses (and other data) could be

encoded for other specific computing platforms, including SOAP/WSDL.

EXAMPLES 2 Platform-specific specifications for KVP encoding are contained in Subclauses 9.2.1 and 10.2.2.

EXAMPLES 3 Platform-specific specifications for XML encoding are contained in Subclauses 8.3.2, 8.3.4, 9.2.3,
9.3.2, 10.2.3, and 10.3.3.

OGC 05-007r7

4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

6 WPS overview

The specified Web Processing Service (WPS) provides client access to pre-programmed

calculations and/or computation models that operate on spatially referenced data. The

data required by the service can be delivered across a network, or available at the server.

This data can use image data formats or data exchange standards such as Geography

Markup Language (GML). The calculation can be as simple as subtracting one set of

spatially referenced numbers from another (e.g. determining the difference in influenza

cases between two different seasons), or as complicated as a global climate change

model.

Enabling geospatial processing on the Internet requires the development of a wide variety

web services to support atomic geospatial operations as well as sophisticated modelling

capabilities. It is important to standardize the way that these processes are called, in order

to reduce amount of programming required, and to facilitate the implementation and

adoption of new services. WPS is intended to help OGC members to achieve these goals.

6.1 WPS Operations

The WPS interface specifies three operations that can be requested by a client and

performed by a WPS server, all mandatory implementation by all servers. Those

operations are:

a) GetCapabilities – This operation allows a client to request and receive back service

metadata (or Capabilities) documents that describe the abilities of the specific server

implementation. The GetCapabilities operation provides the names and general

descriptions of each of the processes offered by a WPS instance. This operation also

supports negotiation of the specification version being used for client-server

interactions.

b) DescribeProcess – This operation allows a client to request and receive back detailed

information about the processes that can be run on the service instance, including the

inputs required, their allowable formats, and the outputs that can be produced.

c) Execute – This operation allows a client to run a specified process implemented by

the WPS, using provided input parameter values and returning the outputs produced.

These operations have many similarities to other OGC Web Services, including the

WMS, WFS, and WCS. The interface aspects that are common with these other OWSs

are specified in the OpenGIS
®

Web Services Common Implementation Specification

[OGC 06-121r3]. Some of these common aspects are normatively referenced herein,

instead of being repeated in this specification.

Figure 1 is a simple UML diagram summarizing the WPS interface. This class diagram

shows that the WPS interface class inherits the getCapabilities operation from the

OGCWebService interface class, and adds the DescribeProcess and Execute operations.

(This capitalization of names uses the OGC/ISO profile of UML.) A more complete

UML model of the WPS interface is provided in Annex C (informative).

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 5

OGCWebService {Abstract}

+ getCapabilities(request : GetCapabilities) : ServiceMetadata

(from OWS Get Capabi lites)

<<Interface>>

Each server instance instantiates only one object of this class,

and this object always exists while server is available.

WPService

+ describeProcess(request : DescribeProcess) : ProcessDescriptions

+ execute(request : Execute) : ExecuteResponse

Figure 1 — WPS interface UML diagram

NOTE In this UML diagram, the request and response for each operation is shown as a single
parameter that is a data structure containing multiple lower-level parameters, which are discussed in
subsequent clauses. The UML classes modelling these data structures are included in the complete UML
model in Annex C.

For example, consider the simple case of a process that can intersect two polygons. The

response to a GetCapabilities request might indicate that the WPS supports an operation

called ―intersect‖, and that this operation is limited to intersecting one polygon with a

second polygon. The response to a DescribeProcess request for the ―intersect‖ process

might indicate that it requires two inputs, namely: ―FirstPolygon‖ and ―SecondPolygon‖,

and that these inputs must be provided in GML 2.2. Furthermore, the process will

produce one output, in either GML 2.2, or GML 3.1, and it can be delivered as a web-

accessible resource.

The client would run the process by calling the Execute operation, and might choose to

provide the two input polygons embedded directly within the request, and identify that

the output should be stored as a web-accessible resource. After completion, the process

would return an ExecuteResponse XML document that identifies the inputs and outputs,

indicates whether or not the process executed successfully, and if successful, contains a

reference to the web-accessible resource.

Each of the three WPS operations is described in more detail in Clause 7 and subsequent

clauses.

6.2 Generic nature of WPS

WPS is a generic interface in that it does not identify any specific processes that are

supported. Instead, each implementation of WPS defines the processes that it supports,

OGC 05-007r7

6 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

as well as their associated inputs and outputs. WPS can be thought of as an abstract

model of a web service, for which profiles need to be developed to support use, and

standardized to support interoperability. As with the other OGC specifications GML and

CAT, it is the development, publication, and adoption of profiles which define the

specific uses of this specification.

WPS discovery and binding mechanisms follow the OGC model set by WMS and WFS,

in that WPS defines a GetCapabilities operation, and requests are based on HTTP Get

and Post. WPS does more than just describe the service interface, in that it specifies a

request/response interface that defines how to:

 encode requests for process execution

 encode responses from process execution

 embed data and metadata in process execution inputs/outputs

 reference web-accessible data inputs/outputs

 support long-running processes

 return process status information

 return processing errors

 request storage of process outputs

6.3 Middleware nature of WPS

WPS allows for the provision of input data in two different methods. Data can either be

embedded in the Execute request, or referenced as a web accessible resource. In the

former approach, WPS acts as a stand-alone service. In the latter fashion, WPS acts as

middleware service for data, by obtaining data from an external resource in order to run a

process on the local implementation.

WPS allows existing software interfaces to be wrapped up and presented to the network

as web services. Implementations of WPS can thus be considered middleware for

software.

6.4 WPS Profiles

The WPS specification by itself allows service developers to reuse significant amounts of

code in the development of web interfaces, while at the same time facilitating ease of

understanding among web application developers. However, fully-automated

interoperability can be achieved only through using standardized profiles. While it is

possible to write a generic client for WPS, the use of a profile enables optimization of

interoperable client user interface behaviour, as well as the publish/find/bind paradigm.

To achieve high interoperability, each process shall be specified in an Application Profile

of this specification.

A WPS Application Profile describes how WPS shall be configured to serve a process

that is recognized by OGC. An Application Profile consists of

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 7

1. An OGC URN that uniquely identifies the process (mandatory)

2. A reference response to a DescribeProcess request for that process (mandatory).

3. A human-readable document that describes the process and its implementation

(optional, but recommended).

4. A WSDL description for that process (optional).

WPS Application Profiles are intended for consumption by web service registries that

maintain searchable metadata for multiple service instances.

Geospatial infrastructures can establish a geospatial processing web by specifying a

repository that contains a semantically defined hierarchy of processes, each identified by

a URN. A WPS Application Profile can define each unique process within the repository,

and each WPS instance can refer to that URN. The current specification fully supports

this approach to standardized semantically-driven service discovery.

6.5 Service chaining with WPS

A WPS process is normally an atomic function that performs a specific geospatial

calculation. Chaining of WPS processes facilitates the creation of repeatable workflows.

WPS processes can be incorporated into service chains in a number of ways:

1. A BPEL engine can be used to orchestrate a service chain that includes one or

more WPS processes.

2. A WPS process can be designed to call a sequence of web services including

other WPS processes, thus acting as the service chaining engine.

3. Simple service chains can be encoded as part of the execute query. Such

cascading service chains can be executed even via the GET interface.

6.6 WPS and SOAP/WSDL

WPS is compatible with both WSDL and SOAP, and definitions for how to use WPS

with these standards have been defined in this specification.

SOAP can be used to package WPS requests and responses. SOAP describes a message

exchange mechanism which contains an env:body element, but it does not describe the

contents of that body, i.e. the payload. WPS describes a message exchange mechanism

that can be used if SOAP is not required (for security such as encryption or

authentication), but it goes beyond SOAP by specifying what the payload should look

like. Elements that are common to all payloads have been generalized in the WPS

specification, and this standardization dramatically simplifies the amount of custom

coding required to implement an interface for any new service. WPS enables the

development of both software frameworks and generic clients. The use of SOAP to wrap

OGC 05-007r7

8 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

WPS requests offers the ability to add security certificates as well as encryption to web-

based geoprocessing transactions.

WPS supports WSDL. WSDL identifies how a service should be described, but not what

the service interface should look like. WPS describes a significant portion - the common

portion - of what any service should look like. WSDL offers a less comprehensive but

more widely adopted alternative to the publishing mechanism built in to the WPS

interface specification. (WPS offers more documentation than can be published via

WSDL, and more sophisticated service chaining capabilities.)

WPS supports the use of WSDL for an individual WPS process, as well as for the entire

WPS instance that may include several processes. It is not possible to generate a single

generic WSDL document that describes all WPS implementations, since WSDL requires

specific binding information that is only found in WPS profiles. It is possible to use WPS

without WSDL if dynamic binding to well known service instances (e.g. WPS profiles) is

required. WSDL is required in order to facilitate dynamic binding to dynamic services

(i.e. WPS instances with unknown profiles).

WPS offers the following advantages to an approach restricted to the current

SOAP/WSDL specifications.

1. It supports the OGC GetCapabilities construct, which simplifies its adoption

within the geospatial community that has already adopted OGC specs,

2. For a single output, it supports the direct return of that output without any XML

wrapper, which allows for REST-like architecture while still enabling publish and

find

3. It specifies how to determine the status of a process, which enables the support

long-running processes.

4. It specifies exactly how to package and describe the inputs and outputs, which

facilitates the development of reusable software frameworks and clients.

5. It specifies how to request storage of process outputs, which facilitates service

chaining and subsequent retrieval.

6. It specifies how to reference web resources as inputs/outputs, which facilitates

service chaining.

7. It specifies how to describe and embed complex inputs, which facilitates the

development of reusable components to store and extract these inputs from a

processing request.

8. It offers a service discovery mechanism that can be used without the overhead and

complexity of WSDL, while at the same time supporting the option to use WSDL

when required to facilitate discovery and binding.

9. It facilitates service chaining, since a WPS service can be constructed to call other

services, including other WPS services.

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 9

10. It defines standard error messages, which simplifies the coding of error response

handling for multiple processes.

11. It enables the client to choose whether to use a REST or SOAP architectural

approach, since it specifies how to support both architectures from one service

implementation.

7 Shared aspects

7.1 Introduction

This clause specifies aspects of WPS behavior that are shared by multiple operations.

The ―Multiplicity and use‖ columns in the tables in this document specify whether a

parameter or data structure must be present and populated in an operation request or

response. All WPS servers shall implement each ―mandatory‖ and ―optional‖ parameter

and data structure, checking that each request parameter and data structure is received

with any allowed value(s). Similarly, all WPS clients shall implement each ―mandatory‖

and ―optional‖ parameter and data structure, using specified values.

7.2 Shared data structures

This clause specifies some of the data structures and parameters used by multiple

operation requests and responses specified in the following clauses. The data structure

names, parameter names, meanings, data types, and multiplicity shall be as specified in

Table 1 and Table 2.

NOTE 1 The 3 parameters listed below (with partial grey backgrounds) are partially copied from Table
32 in Subclause 10.6.1 of [OGC 06-121r3].

Table 1 — Parameters in Description data structure

Name Definition Data type and value Multiplicity and use

Identifier Unambiguous identifier or name of a
process, input, or output, unique for
this server

ows:CodeType, as
adaptation of
MD_Identifier class
in ISO 19115

One (mandatory)

Title Title of a process, input, or output,
normally available for display to a
human

Character string type,
not empty

Includes xml:lang
attribute

One (mandatory) a

Abstract Brief narrative description of a process,
input, or output, normally available
for display to a human

Character string type,
not empty

Includes xml:lang
attribute

Zero or one (optional)

Include when
available and useful

a When this element is not mandatory it is noted in the referring table.

OGC 05-007r7

10 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Table 2 — Parts of ProcessBrief data structure

Name Definition Data type and value Multiplicity and use

Identifier Inherited from Description
data structure, see Table 1,
applied to a process

ows:CodeType One (mandatory)

Title Character string type One (mandatory)

Abstract Character string type Zero or one (optional)

Metadata

Reference to more metadata
about this process

ows:Metadata, see Table
32 of OGC 06-121r3

Zero or more (optional)

Include when useful

Profile Profile to which the WPS
process complies

URN type.

E.g.
OGC:WPS:somename

Zero or more (optional) a

WSDL Location of a WSDL
document which describes
this process.

WSDLtype

See Table 3

Zero or one (optional)

process
Version

Release version of process
(not of WPS specification)

ows:VersionType, see
OGC 06-121r3

Zero or one (optional)

Include when needed to
identify process version b

a OGC will normally define only one profile URN to which a process corresponds. The ability to support

multiple profile URNs is designed to support evolution in URNs and multiple URN authorities.

b The processVersion is informative only. Version negotiation for processVersion is not available. Requests

to Execute a process do not include a processVersion identifier.

Table 3 — Parts of WSDL data structure

Name Definition Data type and value Multiplicity and use

xlink:href URL from which the WSDL
document can be retrieved.

xlink:href type One (mandatory)a

a The processVersion is informative only. Version negotiation for processVersion is not available. Requests

to Execute a process do not include a processVersion identifier.

Table 4 — Parts of Format data structure

Name Definition Data type Multiplicity

mimeType Identification of mime type of this
input or requested for this output
parameter's value

Character String type,
not empty

ows:MimeType

Zero or one (optional)

Include when format
not in http header

encoding Reference to encoding of this input or
requested for this output

URI type Zero or one (optional)

Include when not
default encoding

schema Reference to XML Schema Document
that specifies content model of input
or output parameter's value

URL type Zero or one (optional)

Include when XML
encoded resource

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 11

7.3 Operation request encoding

The encoding of operation requests shall use HTTP GET with KVP encoding and HTTP

POST with XML encoding as specified in Clause 11 of [OGC 06-121r3]. Table 5

summarizes the three Service operations and their encoding methods defined in this

specification.

Table 5 — Operation request encoding

Operation name Request encoding

GetCapabilities (mandatory) KVP and optional XML

DescribeProcess (mandatory) KVP and optional XML

Execute (mandatory) XML and optional KVP

8 GetCapabilities operation (mandatory)

8.1 Introduction

The mandatory GetCapabilities operation allows clients to retrieve service metadata from

a server. The response to a GetCapabilities request shall be a XML document containing

service metadata about the server, including brief metadata describing all the processes

implemented. This clause specifies the XML document that a WPS server must return to

describe its capabilities.

8.2 GetCapabilities operation request

The GetCapabilities operation request shall be as specified in Subclauses 7.2 and 7.3 of

OWS Common [OGC 06-121r3]. The value of the ―service‖ parameter shall be ―WPS‖.

The ―Multiplicity and use‖ column in Table 1 of [OGC 06-121r3] specifies the

optionality of each listed parameter in the GetCapabilities operation request. Table 6

specifies the implementation of those parameters by WPS clients and servers.

Table 6 — Implementation of parameters in GetCapabilities operation request

Name Multiplicity Client implementation Server implementation

service One (mandatory) Each parameter shall be
implemented by all
clients, using
specified value.

Each parameter shall be
implemented by all servers,
checking that each parameter
is received with specified
value.

Request One (mandatory)

AcceptVersions Zero or one (optional) Should be implemented
by all clients, using
specified values.

Shall be implemented by all
servers, checking if parameter
is received with specified
value(s).

language Zero or one (optional) Should be implemented
by all clients

Should be implemented by
servers offering multilingual
capabilities

OGC 05-007r7

12 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

8.2.1 HTTP GET request using KVP encoding (mandatory)

All WPS servers shall implement HTTP GET transfer of the GetCapabilities operation

request, using KVP encoding. WPS servers shall NOT implement KVP encoding using

HTTP POST transfer.

EXAMPLE To request a WPS capabilities document, a client could issue the following KVP encoded
GetCapabilities operation request:

http://foo.bar/foo?

service=WPS&

Request=GetCapabilities&

AcceptVersions=1.0.0&

language=en-CA

8.2.2 GetCapabilities HTTP POST request using XML encoding (optional)

WPS servers may also implement HTTP POST transfer of the GetCapabilities operation

request, using XML encoding only. This capability is provided to support SOAP. The

following schema specifies the contents and structure of a GetCapabilities operation

request encoded in XML:

 wpsGetCapabilities_request.xsd

EXAMPLE: An example GetCapabilities operation request XML encoded for HTTP

POST is:

 examples\10_wpsGetCapabilities_request.xml

8.3 GetCapabilities operation response

8.3.1 Normal response

The service metadata document shall be an XML Capabilities document that contains the

parameters and sections specified in Table 7.

NOTE The shaded areas in the following table are largely copied from section 7.4.2 of [OGC 06-
121r3].

../Local%20Settings/wpsGetCapabilities_request.xsd
../Local%20Settings/examples/10_wpsGetCapabilities_request.xml

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 13

Table 7 —Parts of Capabilities document

Name Definition Data type and value Multiplicity
and use

service Service Identifier Character String type, not
empty

Shall contain ―WPS‖

One
(mandatory)

version Specification version for
operation

Character String type, not
empty

Shall contain ―1.0.0‖

One
(mandatory)

update
Sequence

Service metadata document
version, having values that
are "increased" whenever
any change is made in
service metadata
document.

Character String type, not
empty.

Values are selected by each
server implementation.

Zero or One
(optional)

lang Language Identifier Character string type, not
empty

RFC4646 language code of the
human readable text

One
(mandatory)

Service
Identification

Metadata about this specific
server.

The schema of this section
shall be the same as for all
OWSs, as specified in
Subclause 7.4.4 and
owsServiceIdentification.xsd
of [OGC 06-121r3].

One
(mandatory)

Service
Provider

Metadata about the
organization operating this
server.

The schema of this section
shall be the same for all
OWSs, as specified in
Subclause 7.4.5 and
owsServiceProvider.xsd of
[OGC 06-121r3].

One
(mandatory)

Operations
Metadata

Metadata about the
operations specified by
this service and
implemented by this
server, including the
URLs for operation
requests.

The basic contents and
organization of this section
shall be almost the same as
for all OWSs, as specified in
Subclause 7.4.6 and
owsOperationsMetadata.xsd
of [OGC 06-121r3], modified
as specified in subclause
8.3.2 below.

One
(mandatory)

Process
Offerings

Unordered list of brief
descriptions of the
processes offered by the
server

ProcessOfferings data
structure, see subclause 8.3.3
below.

One
(mandatory)

Languages Languages supported by the
server

Languages data structure, see
subclause 8.3.4 below.

One
(mandatory)

WSDL Location of a WSDL
document describing all
operations and processes
offered by the server

WSDL data structure, see
subclause 8.3.5 below.

Zero or One
(optional)

OGC 05-007r7

14 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

8.3.2 OperationsMetadata section contents

For the WPS, the OperationsMetadata section shall be similar to all other OGC Web

Services, as specified in Subclause 7.4.6 and owsOperationsMetadata.xsd of [OGC 06-

121r3]. The operations that shall exist in all WPS servers and therefore shall be

described in the OperationsMetadata section are shown in Table 8.

Table 8 — Operations described in the OperationsMetadata section

Operation name Meaning

GetCapabilities The GetCapabilities operation is implemented by this server.

DescribeProcess The DescribeProcess operation is implemented by this server.

Execute The Execute operation is implemented by this server.

8.3.3 ProcessOfferings section

The ProcessOfferings section of a WPS service metadata document shall contain a brief

description of each of the processes offered by the service. The ProcessOfferings section

shall include the subsections specified in Table 9.

Table 9 — Parts of ProcessOfferings section

Name Definition Data type Multiplicity and use

Process Brief description of process, not
including input and output
parameters

ProcessBrief data
structure, see Table 2

One or more (mandatory)

One for each process
implemented by server

NOTE The UML class diagram contained in Subclause C.4 provides a graphical view of the contents
of the ProcessOfferings section listed in Table 9.

8.3.4 Languages section

The Languages section of a WPS service metadata document shall contain a list of the

default and optional languages offered by the service. The Languages section shall

include the subsections specified in Table 10.

Table 10 — Parts of Languages section

Name Definition Data type Multiplicity and use

Default Identifies the default language
that will be used unless the
operation request specifies
another supported language.

Includes one Language
data structure, as
specified in Table 11

One (mandatory)

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 15

Name Definition Data type Multiplicity and use

Supported Unordered list of references to all
of the languages supported by
this service. The default
language shall be included in
this list.

Includes one or more
Language data
structures, as
specified in Table 11

One (mandatory)

Table 11 —Language data structure

Name Definition Data type Multiplicity and use

Language Identifier of a language supported
by the server.

Character String type,
not empty.

This language identifier
shall be as specified
in IETF RFC 4646.

One (mandatory)

8.3.5 WSDL section

The WSDL section of a WPS service metadata document shall identify the location of a

WSDL document which describes the entire service. The ProcessOfferings section shall

include the subsections specified in Table 9.

Table 12 — Parts of WSDL section

Name Definition Data type Multiplicity and use

href The URL from which the WSDL
document can be retrieved.

xlink:href type One (mandatory)

NOTE It is also possible to describe each individual process supported by the service using

separate WSDL documents that can be identified in the DescribeProcess response.

8.3.6 Capabilities document XML encoding

The XML schema for a WPS service metadata document is at:

 wpsGetCapabilities_response.xsd

This XML schema extends ows:CapabilitiesBaseType in owsCommon.xsd of [OGC 06-

121r3].

 An example of a ProcessOfferings and a Languages section are included at the end of the

following Capabilities document example. In order to obtain detailed information about a

process, the DescribeProcess operation can be used.

EXAMPLE: A GetCapabilities operation response for WPS can look like this:

 examples\20_wpsGetCapabilities_response.xml

../Local%20Settings/wpsGetCapabilities_response.xsd
../Local%20Settings/examples/20_wpsGetCapabilities_response.xml

OGC 05-007r7

16 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

8.3.7 GetCapabilities exceptions

When a WPS server encounters an error while performing a GetCapabilities operation, it

shall return an exception report message as specified in Clause 8 of [OGC 06-121r3].

The allowed exception codes shall include those listed in Table 5 of Subclause 7.4.1 of

[OGC 06-121r3].

9 DescribeProcess operation (mandatory)

9.1 Introduction

The mandatory DescribeProcess operation allows WPS clients to request a full

description of one or more processes that can be executed by the Execute operation. This

description includes the input and output parameters and formats. This description can be

used to automatically build a user interface to capture the parameter values to be used to

execute a process instance.

9.2 DescribeProcess operation request

9.2.1 DescribeProcess request parameters

A request to perform the DescribeProcess operation shall include the parameters listed

and defined in Table 13. This table specifies the UML data type, source of values, and

multiplicity of each listed parameter, plus the meaning to servers when each optional

parameter is not included in the operation request. Although some values listed in the

―Name‖ column appear to contain spaces, they shall not contain spaces.

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 17

NOTE 1 The first three parameters listed below are largely copied from Table 26 in Subclause 9.2.1 of
[OGC 06-121r3]. The Identifier parameter is partially copied from Table 31 in Subclause 10.6.1 of that
document.

Table 13 — Parameters in DescribeProcess operation request

Name a Definition Data type and value Multiplicity and use

service Service type identifier Character String type

Value is ―WPS‖

One (mandatory)

request Operation name Character String type

Value is ―DescribeProcess‖

One (mandatory)

version Specification version
for operation

Character String type, not empty

Value is specified by each WPS
Implementation Specification and
Schemas version

One (mandatory)

language Language identifier Character string type,

RFC4646 language code of the
human readable text. Must be a
language listed in the Capabilities
Languages element.

Zero or one (optional)

Identifier Identifier

Process identifier

Character String type, not empty

Value is process Identifier defined in
ProcessOfferings section of service
metadata (Capabilities) document

One or more (mandatory)

One for each desired
Process, unordered list

a The name capitalization rules being used here are specified in Subclause 11.6.2 of [OGC 06-121r3].

NOTE 2 The data type of many parameters is specified as ―Character String type, not empty‖. In the
XML Schema Documents specified herein, these parameters are encoded with the xsd:string type, which
does NOT require that these strings not be empty.

NOTE 3 The UML class diagrams contained in Subclause C.5 provides a graphical view of the contents
of the DescribeProcess operation request listed in Table 13.

9.2.2 DescribeProcess HTTP GET request KVP encoding (mandatory)

All WPS servers shall implement HTTP GET transfer of the DescribeProcess operation

request, using KVP encoding. The KVP encoding of the DescribeProcess operation

request shall use the parameters specified in Table 14. The parameters listed in Table 14

shall be as specified in Table 13 above.

OGC 05-007r7

18 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Table 14 — DescribeProcess operation request URL parameters

Name and example
 a Optionality Definition and format

service=WPS Mandatory Service type identifier

request=DescribeProcess Mandatory Operation name

version=1.0.0 Mandatory WPS specification and schema version for this operation

Language=en-CA Optional Language of the human readable text in the response.

Identifier=intersection,union
b
 Mandatory List of one or more process identifiers as listed in the

Capabilities document, separated by commas

a All parameter names are here listed using mostly lower case letters. However, any parameter name capitalization shall be
allowed in KVP encoding, see Subclause 11.5.2 of [OGC 06-121r3].

b The use of the Identifier ALL is restricted as an option for an Identifier in the DescribeProcess operation. When
Identifier=ALL, the DescribeProcess operation shall return process descriptions for all processes served up by the WPS
instance.

EXAMPLE An example DescribeProcess operation request KVP encoded for HTTP GET is:

http://foo.bar/foo?
Service=WPS&
Request=DescribeProcess&
Version=1.0.0&
Language=en-CA
Identifier=intersection,union

9.2.3 DescribeProcess HTTP POST request XML encoding (optional)

WPS servers may also implement HTTP POST transfer of the DescribeProcess operation

request, using XML encoding only. The following schema specifies the contents and

structure of a DescribeProcess operation request encoded in XML:

 wpsDescribeProcess_request.xsd

EXAMPLE: An example DescribeProcess operation request XML encoded for HTTP

POST is:

 examples\30_wpsDescribeProcess_request.xml

9.3 DescribeProcess operation response

9.3.1 DescribeProcess response parameters

The normal response to a valid DescribeProcess operation request shall be a

ProcessDescriptions data structure, which contains one or more Process Descriptions for

the requested process identifiers. Each Process Description includes the brief information

returned in the ProcessOfferings section of the service metadata (Capabilities) document,

plus descriptions of the input and output parameters. Each process can have any number

of input and output parameters.

http://foo.bar/foo
../Local%20Settings/wpsDescribeProcess_request.xsd
../Local%20Settings/examples/30_wpsDescribeProcess_request.xml

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 19

Each parameter is described by a data structure that specifies the allowable formats,

encodings, and units of measure (when applicable). For each input parameter, the process

can indicate that it needs one of the following:

a) ―ComplexData‖ (such as XML or imagery), in one of the following allowable

combinations of format (mimetype, encoding, and schema). The value of this

complex data structure can be (either) directly encoded in the Execute operation

request or made available through a web accessible URL.

b) ―LiteralData‖, with a specified data type, allowable values, default value, and

allowable unit of measure indicated.

c) BoundingBoxData, using one of the supported coordinate reference systems.

For each output parameter, the process can indicate similar information about the

corresponding forms of output parameters. Again, there are three types of process

outputs: ComplexOutput, LiteralOutput, and BoundingBoxOutput.

More precisely, a response from the DescribeProcess operation shall be a

ProcessDescriptions data structure that includes one or more ProcessDescription data

structures, as listed in

OGC 05-007r7

20 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Table 15. The ProcessDescription data structure shall include the parts specified in Table

16 through Table 29. All these tables specify the UML model data type plus the

multiplicity and use of each listed part in the DescribeProcess operation response.

The ―Multiplicity and use‖ columns in the following tables specify the optionality of each

listed parameter and data structure in the DescribeProcess operation response. Each

―mandatory‖ parameter and data structure shall be implemented by all OWS servers,

using a specified value(s). Each ―optional‖ parameter and data structure shall also be

implemented by all OWS servers, using specified values, for each implemented process

for which that metadata is relevant and available.

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 21

Table 15 — Parts of ProcessDescriptions data structure

Name Definition Data type Multiplicity and use

Process
Description

Full description of process,
including all input and
output parameters

ProcessDescription
data structure, see
Table 16

One or more (mandatory)

One for each Process identified
in operation request

service Service Identifier Character String type,
not empty

Shall contain ―WPS‖

One (mandatory)

version Specification version for
operation

Character String type,
not empty

Value is specified by
each
Implementation
Specification and
Schemas version

One (mandatory)

lang Language Identifier Character string type,
not empty

RFC4646 language
code of the human
readable text

One (mandatory)

NOTE 1 The UML class diagrams contained in Subclause C.5 provide a useful graphical view of the
contents of the ProcessDescriptions contents listed in

OGC 05-007r7

22 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Table 15 through Table 30.

Table 16 — Parts of ProcessDescription data structure

Name Definition Data type and values Multiplicity and use

Identifier Inherited from
ProcessBrief data
structure, see Table 2

ows:CodeType One (mandatory)

Title Character string type One (mandatory)

Abstract Character string type Zero or one (optional)

Metadata ows:Metadata Zero or more (optional)

Profile URN type.

E.g.
OGC:WPS:somename

Zero or more (optional)

processVersion ows:VersionType One (mandatory)

WSDL Location of a WSDL
document that describes
this process. An
example is shown in
Annex F section D5.

WSDL data structure,
see Table 17

Zero or one (optional)

DataInputs List of the required and
optional inputs to this
process

DataInputs data
structure, see Table 18

Zero or one (optional)

Include if any inputs a

ProcessOutputs List of the required and
optional outputs from
executing this process

ProcessOutputs data
structure, see Table 34

One (mandatory)

storeSupported Indicates if complex data
output(s) from this
process can be requested
to be stored by the WPS
server as web-accessible
resources

Boolean type

Values are: true and
false

Default is false (return
directly in response)

Zero or one (optional)

Include when storage of
outputs including the
Execute response
document is supported b

statusSupported Indicates if Execute
operation response can
be returned quickly with
status information

Boolean type

Values are: true and
false

Default is false c

Zero or one (optional)

Include when updating of
status data is supported d

a In almost all cases, at least one process input is required. However, the process inputs list may be empty

when all the inputs are predetermined fixed resources. In this case, those resources shall be identified in the

Abstract parameter describing the process.

b By default, storage is not supported, and all outputs are returned encoded in the Execute response. If

"storeSupported" is "true", the Execute operation request may request that the execute response and specific

outputs of the process shall be stored as a web-accessible resources so that they can be retrieved as required.

Support for storage of outputs is recommended to facilitate service chaining when outputs are large.

c By default, the server shall not update the Status element, and the Execute operation response shall not be

returned until process execution is complete.

d The ―statusSupported‖ parameter is used to support asynchronous requests via a type of polling. If

―statusSupported‖ is "true", the server shall keep the Status element of the stored Execute response document up

to date while the request is being processed. The client can poll the updated Execute operation response via the

URL identified for this purpose in the Execute response document. If "false" the Status element shall not be

updated by the server until processing has completed or failed. The ability to update the Status element is

recommended for processes that are not instantaneous.

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 23

NOTE 2 The first 6 parameters listed above (with partially grey background) are copied from Table 2 in
Subclause 7.2 of this document.

Table 17 — Parts of WSDL data structure

Name Definition Data type and values Multiplicity and use

href The URL from which the
WSDL document can be
retrieved.

URI type One (mandatory)

Table 18 — Parts of DataInputs data structure

Name Definition Data type and values Multiplicity and use

Input Description of mandatory or
optional input to this process

InputDescription data
structure, see

Table 19

One or more (mandatory)

Include one for each possible
process input, unordered

Table 19 — Parts of InputDescription data structure

Name Definition Data type and values Multiplicity and use

Identifier Inherited from Description data
structure, see Table 1, applied to
an input

ows:CodeType One (mandatory)

Title Character string type One (mandatory)

Abstract Character string type Zero or one (optional)

minOccurs a Minimum number of times that
values for this parameter are
required

nonNegativeInteger type

―0‖ means the parameter
is optional

One (mandatory)

maxOccurs a Maximum number of times that
this parameter may be present

positiveInteger type One (mandatory)

Metadata Reference to more metadata about
this input

ows:Metadata, see Table
32 of OGC 06-121r3

Zero or more
(optional)

Include when useful

InputForm
Choice

Identifies the type of this input,
and provides supporting
information

InputFormChoice data
structure, see Table 20

One (mandatory)

a The minOccurs and maxOccurs parameters have similar semantics to the like-named XML Schema

occurrence constraints.

NOTE 3 The first 3 parameters listed above (with partially grey background) are copied from Table 1 in
Subclause 7.2 of this document.

OGC 05-007r7

24 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Table 20 — Parts of InputFormChoice data structure

Name Definition Data type Multiplicity

ComplexData Indicates that this input shall be a complex
data structure (such as a GML fragment),
and provides lists of formats, encodings, and
schemas supported b

Supported-
ComplexData

data
structure, see

Table 21

Zero or one
(conditional) a

LiteralData Indicates that this input shall be a simple
literal value (such as an integer) that is
embedded in the execute request, and
describes the possible values

LiteralInput data
structure, see
Table 25

Zero or one
(conditional) a

BoundingBox
Data

Indicates that this input shall be a
BoundingBox data structure that is
embedded in execute request, and provides a
list of the CRSs supported in these
Bounding Boxes

SupportedCRSs
data structure,
see Table 31

Zero or one
(conditional) a

a One and only one of these three items shall be included.

b The value of this complex data structure can be input either embedded in the Execute request or remotely

accessible to the server.

Table 21 — Parts of ComplexData data structure

Name Definition Data type and values Multiplicity and use

Default Identifies the default Format,
Encoding, and Schema supported
for this input or output. The
process shall expect input in or
produce output in this
combination of
Format/Encoding/Schema unless
the Execute request specifies
otherwise. This element is
mandatory.

Default Format data
structure, see Table 22

One (mandatory)

Supported Combination of format, encoding,
and/or schema supported by
process input or output.

Supported Format data
structure, see Table 24

One (mandatory)a

maximum
Megabytes

The maximum file size, in
megabytes, of this input. If the
input exceeds this size, the server
will return an error instead of
processing the inputs.

Integer Zero or one (optional)

a This data structure shall be repeated for each combination of Format / Encoding / Schema that is supported for

this Input / Output, including the default Format / Encoding / Schema combination.

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 25

Table 22 — Parts of Default Format data structure

Name Definition Data type and values Multiplicity and use

Format Identification of default
Format for process input or
output a

Format data structure,
see Table 23

One (mandatory)

a The process shall expect input or produce output in this Format unless the Execute request specifies another

supported Format.

Table 23 — Parts of Format data structure

Name Definition Data type and values Multiplicity and use

MimeType Identification of default
Format for process input
or output a

Character String type,
not empty

ows:MimeType

One (mandatory)

Encoding Reference to default
encoding for process input
or output b

URI type Zero or one (optional)c

Schema Reference to default XML
Schema Document for
process input or output d

URI type Zero or one (optional)

Include when encoded using
XML schema e

a The process shall expect input or produce output in this MimeType unless the Execute request specifies

another supported MimeType.

b The process shall expect input or produce output using this encoding unless the Execute request specifies

another supported encoding.

c This element shall be included when the default Encoding is other than the encoding of the XML response

document (e.g. UTF-8). This parameter shall be omitted when there is no Encoding required for this input/output.

d The process shall expect input or produce output conformant with this XML element or type unless the

Execute request specifies another supported XML element or type.

e This element shall be omitted when there is no XML Schema associated with this input/output (e.g., a GIF

file). This parameter shall be included when this input/output is XML encoded using an XML schema. When

included, the input/output shall validate against the referenced XML Schema. Note: If the input/output uses a

profile of a larger schema, the server administrator should provide that schema profile for validation purposes.

Table 24 — Parts of Supported Format data structure

Name Definition Data type and values Multiplicity and use

Format Identification of Formats
supported by process input
or output a

Format data structure,
see Table 23

One or more (mandatory)

a The process shall expect input or produce output in this Format unless the Execute request specifies another

supported Format.

OGC 05-007r7

26 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Table 25 — Parts of LiteralInput data structure

Name Definition Data type Multiplicity and use

DataType Data Type of this output (or
input)

ows:DataType type Zero or one (optional)

UOMs List of units of measure
supported for this numerical
output (or input)

UOMs data structure,
see Table 26

Zero or one (optional)

Include if the literal value
has units of measure

LiteralValues
Choice

Identifies type of literal input
and provides supporting
information

LiteralValuesChoice
data structure, see
Table 29

One (mandatory)

DefaultValue Default value of this input,
encoded in character string a

CharacterString, not
empty

Zero or one (optional)

Include when default exists

a The DefaultValue shall be understood to be consistent with the unit of measure selected in the Execute

request. If the Execute request does not indicate a unit of measure, DefaultValue shall apply to the default unit of

measure for this input.

Table 26 — Parts of UOMs data structure

Name Definition Data type Multiplicity and use

Default Identifies default unit
of measure of this or
input

 a

Default UOM data
structure, see Table 27

One (mandatory)

Supported Units of measure
supported for this
input

Supported UOM data
structure, see Table 28

One (mandatory)

a A specific input or output for a WPS instance will always have just one measure type (length, area, speed,

weight, etc.).

Table 27 — Parts of Default UOM data structure

Name Definition Data type Multiplicity and use

UOM Default unit of
measure of this input

ows:UoM data structure One (mandatory)

Table 28 — Parts of Supported UOM data structure

Name Definition Data type Multiplicity and use

UOM Unit of measure
supported for this
input

ows:UoM data structure One or more (mandatory)

Include for all of the UoMs
supported for this input,
including the default UoM.

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 27

Table 29 — Parts of LiteralValuesChoice data structure

Name Definition Data type Multiplicity

AllowedValues Indicates that are finite set of values
and ranges allowed for this input, and
contains ordered list of all valid
values and/or ranges

ows:AllowedValues
data structure

Zero or one
(conditional) a

AnyValue Indicates that any value is allowed for
this input

ows:AnyValue data
structure

Zero or one
(conditional) a

Values
Reference

References an externally defined finite
set of values and ranges for this input

ValuesReference data
structure, see Table
30

Zero or one
(conditional) a

a One and only one of these three items shall be included.

Table 30 — Parts of ValuesReference data structure

Name Definition Data type Multiplicity and use

reference URL from which this set of
ranges and values can be
retrieved

URI type One (mandatory)

valuesForm Reference to a description
of the mimetype,
encoding, and schema
used for this set of values
and ranges.

URI type One (mandatory)

Table 31 — Parts of SupportedCRSs data structure

Name Definition Data type Multiplicity and use

Default Reference to the default
coordinate reference system
(CRS)

Default CRS data
type, see Table 32

One (mandatory)

Supported Reference to one coordinate
reference system (CRS)

Supported CRS
data type, see
Table 33

One or more (optional)

Include for each additional
CRS supported

Table 32 — Parts of Default CRS data structure

Name Definition Data type Multiplicity and use

CRS Reference to one
coordinate reference
system (CRS)

URI type One (mandatory)

OGC 05-007r7

28 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Table 33 — Parts of Supported CRS data structure

Name Definition Data type Multiplicity and use

CRS Reference to one
coordinate reference
system (CRS)

URI type One or more (mandatory)

Include for all of the CRSs
supported for this input,
including the default CRS.

Table 34 — Parts of ProcessOutputs data structure

Name Definition Data type and values Multiplicity and use

Output Description of mandatory or
optional output from
executing this process

OutputDescription data
structure, see Table 35

One or more (mandatory)

Include one for each possible
process output, unordered

Table 35 — Parts of OutputDescription data structure

Name Definition Data type Multiplicity and use

Identifier Inherited from Description
data structure, see Table
1, applied to an output

ows:CodeType One (mandatory)

Title Character string type One (mandatory)

Abstract Character string type Zero or one (optional)

Metadata Reference to more
metadata about this
output

ows:Metadata, see Table
32 of OGC 06-121r3

Zero or more
(optional)

Include when useful

OutputFormChoice Identifies the type of this
output and provides
supporting information

OutputFormChoice data
structure, see Table 36

One (mandatory)

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 29

Table 36 — Parts of OutputFormChoice data structure

Name Definition Data type Multiplicity

ComplexOutput Indicates that this output shall be a
complex data set (such as a GML
fragment), and provides lists of formats,
encodings, and schemas supported for
this output b, c

ComplexData
data structure,

see

Table 21

Zero or one
(conditional) a

LiteralOutput Indicates that this output shall be a simple
literal value (such as an integer) that is
embedded in execute response, and
describes the possible values

LiteralOutput
data structure,
see Table 37

Zero or one
(conditional) a

BoundingBox
Output

Indicates that this output shall be a
BoundingBox data structure that is
embedded in execute response, and
provides a list of the CRSs supported in
these Bounding Boxes

SupportedCRSs
data structure,
see Table 31

Zero or one
(conditional) a

a One and only one of these three items shall be included.

b The client can select from among the identified mime type, encodings, and schemas to specify the form of

the output. This allows for complete specification of particular versions of GML, or image formats.

c The Execute request can indicate how the value of a complex data structure shall be output. The value may

be either 1) embedded in the Execute operation response, 2) made available via a separate web-accessible

resource that is referenced in the Execute operation response, or 3) returned in its raw form directly to the client

instead of being embedded or referenced in an Execute operation response document. The intent of this behavior

is to ensure flexibility to support a variety of client processing requirements. Support for direct response is

intended for data types that are not coded in XML, or where recoding to the normal WPS execute response

structure would complicate processing to no benefit (i.e. both client and server understand another encoding and

the WPS execute response XML would simply act as a transport envelope.)

Table 37 — Parts of LiteralOutput data structure

Name Definition Data type Multiplicity and use

DataType Data type of this output (or
input)

ows:DataType data
structure

Zero or one (optional)

Include when data type
not character string

UOMs List of units of measure
supported of this numerical
output (or input)

UOMs data structure, see
Table 26

Zero or one (optional)

Include when value(s)
have a unit of measure

9.3.2 DescribeProcess response XML encoding

The wpsDescribeProcess_response.xsd schema specifies the contents and structure of a

DescribeProcess operation response, always encoded in XML. The schema contains

annotations that specify the meaning and use of each element and attribute.

 wpsDescribeProcess_response.xsd

../Local%20Settings/wpsDescribeProcess_response.xsd

OGC 05-007r7

30 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

EXAMPLE: A DescribeProcess operation response for WPS can look like this encoded

in XML:

examples\40_wpsDescribeProcess_response.xml

9.3.3 DescribeProcess exceptions

When a WPS server encounters an error while performing a DescribeProcess operation, it

shall return an exception report message as specified in Subclause 8 of [OGC 06-121r3].

The allowed standard exception codes shall include those listed in Table 38. For each

listed exceptionCode, the contents of the ―locator‖ parameter value shall be as specified

in the right column of Table 38.

NOTE To reduce the need for readers to refer to other documents, all the values listed below are
copied from Table 25 in Subclause 8.3 of [OGC 06-121r3].

Table 38 — Exception codes for DescribeProcess operation

exceptionCode value Meaning of code “locator” value

MissingParameterValue Operation request does not include a parameter
value, and this server did not declare a default
value for that parameter

Name of missing
parameter

InvalidParameterValue Operation request contains an invalid parameter
value

Name of parameter
with invalid value

NoApplicableCode No other exceptionCode specified by this service
and server applies to this exception

Omit ―locator‖
parameter or
specify the vendor
specific exception
code

10 Execute operation (mandatory)

10.1 Introduction

The mandatory Execute operation allows WPS clients to run a specified process

implemented by a server, using the input parameter values provided and returning the

output values produced. Inputs can be included directly in the Execute request, or

reference web accessible resources. The outputs can be returned in the form of an XML

response document, either embedded within the response document or stored as web

accessible resources. If the outputs are stored, the Execute response shall consist of a

XML document that includes a URL for each stored output, which the client can use to

retrieve those outputs. Alternatively, for a single output, the server can be directed to

return that output in its raw form without being wrapped in an XML reponse document.

Normally, the response document is returned only after process execution is completed.

However, a client can instruct the server to return the Execute response document

immediately following acceptance by the server of the Execute request. In this case, the

Execute response includes a URL from which the response document can later be

retrieved during and after process execution. The server can be instructed to provide

../Local%20Settings/examples/40_wpsDescribeProcess_response.xml

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 31

regular updates to a measure of the amount of processing remaining if the process is not

complete. This allows the client to determine the process status by polling this URL. An

example of how this works is shown in the UML activity diagram shown in Figure 2.

Figure 2 — Activity diagram when client requests storage of results

10.2 Execute operation request

10.2.1 Execute request parameters

A request to perform the Execute operation shall include the parameters listed and

defined in Table 39 through Table 48. These tables specify the UML model data type,

source of values, and multiplicity of each listed parameter in the operation request, plus

the meaning to servers when each optional parameter is included. Although some values

listed in the ―Name‖ columns appear to contain spaces, they shall not contain spaces.

Client WPS
HTTP

server

FTP

server

Execute Request

Execute Response
Copy of Execute Response (process pending)

Updated Execute Response (process started)

Show me the latest Execute Response

latest Execute Response

Updated Execute Response (process completed)

Outputs

Send me the outputs

Outputs

OGC 05-007r7

32 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Table 39 — Parts of Execute operation request

Name Definition Data type and value Multiplicity and use

service Service type identifier Character String type, not empty

Value is OWS type abbreviation,
namely ―WPS‖

One (mandatory)

request Operation name Character String type, not empty

Value is operation name, namely
―Execute‖

One (mandatory)

version Specification version for
operation

Character String type, not empty

Value is specified by each
Implementation Specification
and Schemas version

One (mandatory)

Identifier Unambiguous identifier or
name of a process

ows:CodeType, as adaptation of
MD_Identifier in ISO 19115

Value is process Identifier used
in Capabilities document.

One (mandatory)

DataInputs List of inputs provided to
this process execution

DataInputs data structure, see
Table 40

Zero or one (optional)

Include if any input a

Response
Form

Defines the response type
of the WPS, either raw
data or XML document.
If absent, the response
shall be a response
document which includes
all outputs encoded in the
response.

ResponseForm type data
structure, see Table 49

Zero or one (optional)

Include when
rawDataOutput or
non-default outputs
are requested

language Language identifier Character string type,

RFC4646 language code of the
human readable text. Must be
a language listed in the
Capabilities Languages
element.

One (optional)

a It is possible to have no inputs provided only when all the inputs are predetermined fixed resources. In all

other cases, at least one input is required.

NOTE 1 The first three parameters listed above are largely copied from Table 26 in Subclause 9.2.1 of
[OGC 06-121r3]. The Identifier parameter is largely copied from Table 1 in Subclause 7.2 of this
document.

NOTE 2 The data type of some parameters is specified as "Character String type, not empty". In the
XML Schema Documents specified herein, these parameters are encoded with the xsd:string type, which
validates with a null value, contrary to the requirement that the string be "not empty".

NOTE 3 The UML class diagrams contained in Subclause C.6 provides a useful graphical view of the
contents of the Execute operation request listed in Table 39 through Table 48.

The operation request provides support for multiple inputs. Each input refers to one of the

forms of input that may be required for a single Execute request. The normal way to

provide large inputs to a WPS is through providing one or more URIs (usually URLs) of

input values, unless the inputs are simple scalar values. This is not intended to be used to

facilitate batch processing (e.g., multiple images to be processed through a single

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 33

algorithm). If a process is to be run multiple times (probably using different inputs each

time), each run shall be submitted as a separate Execute operation request.

Note that the list of process inputs and outputs is unsorted. This means that when large

numbers of inputs or outputs exist for a process, an excessive overhead may be placed on

server and client portal interface software as it attempts to interpret the incoming data

stream and transform it as required. For such cases, the implementer is advised to

package and sort the inputs / outputs in an efficient manner, and identify this optimal

sorting requirement in the process description

Table 40 — Parts of DataInputs data structure

Name Definition Data type Multiplicity and use

Input Value of input to this
process execution

InputType data
structure, see Table 41

One or more (mandatory)

Include one for each input, unordered

Table 41 — Parts of InputType data structure

Name Definition Data type Multiplicity and use

Identifier Description data structure applied to
an input, see Table 1

ows:CodeType One (mandatory)

Title Character string
type

Zero or one (optional) a

Abstract Character string
type

Zero or one (optional)

InputData
Form
Choice

Identifies the type of this input or
output value, and provides
supporting information

InputDataForm
Choice data
structure see
Table 42

One (mandatory)

a Title for both inputs and outputs is optional in the Execute request. Title should be omitted in cases where a

direct response is requested, or the title will not be used by the client

NOTE 4 The first 3 parameters listed above (with partially grey background) are copied from Table 1 in
Subclause 7.2 of this document.

Table 42 — Parts of InputDataFormChoice data structure

Name Definition Data type Multiplicity

Reference Identifies this input data as a web
accessible resource, and
references that resource

InputReference data
structure, see Table 43

Zero or one
(conditional) a

Data Identifies this input data as being
encapsulated in the Execute
request

DataType data structure,
see Table 46

Zero or one
(conditional) a

a One and only one of these two items shall be included.

OGC 05-007r7

34 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Table 43 — Parts of InputReference data structure

Name Definition Data type Multiplicity
and Use

mimeType Format data structure, see Table 4 Character String
type

Zero or one
(optional)

encoding URI type Zero or one
(optional)

schema URL type Zero or one
(optional)

href Reference to web-accessible resource to be used
as input

URL type One
(mandatory)

method Identifies the HTTP method. Allows a choice of
GET or POST. Default is GET.

Character String
type

Zero or one
(optional)

Header Extra HTTP request headers needed by the
service identified in ../Reference/@href. For
example, an HTTP SOAP request requires a
SOAPAction header. This permits the creation
of a complete and valid POST request.

Header data
structure, see
Table 44

Zero or one
(optional)

Body The contents of this element to be used as the
body of the HTTP request message to be sent to
the service identified in ../Reference/@href. For
example, it could be an XML encoded WFS
request using HTTP POST, or a SOAP message.

Any type Zero or one
(conditional) a

Body
Reference

Reference to a remote document to be used as
the body of the an HTTP POST request message
to the service identified in ../Reference/@href.

BodyReference
data structure,
see Table 45

Zero or one
(conditional) a

a One and only one of these two items shall be included.

Table 44 — Parts of Header data structure

Name Definition Data type and values Multiplicity and use

key Key portion of the Key-Value pair
in the HTTP request header.

String type, not empty One (mandatory)

value Value portion of the Key-Value
pair in the HTTP request header.

String type, not empty One (mandatory)

Table 45 — Parts of BodyReference data structure

Name Definition Data type and values Multiplicity and use

href Reference to a remote document to
be used as the body of an HTTP
POST request message. This
attribute shall contain a URL
from which this input can be
electronically retrieved.

URI type One (mandatory)

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 35

Table 46 — Parts of DataType data structure

Name Definition Data type Multiplicity

ComplexData Identifies this input or output data
as a complex data structure, and
provides that value

ComplexData data
structure, see Table 47 a

Zero or one
(conditional) b

LiteralData Identifies this input or output data
as a literal data of a simple
quantity, and provides that data
encoded in a character string

Character String type, not
empty.

Includes attributes
identified in LiteralData
data structure, see Table
48

Zero or one
(conditional) b

BoundingBox
Data

Identifies this input or output value
as a BoundingBox data structure,
and provides that value

ows:BoundingBox data
structure, see Subclause
10.2 of [OGC 06-121r3]

Zero or one
(conditional) b

a For an input, this element may be used by a client for any process input coded as ComplexData in the

ProcessDescription. For an output, this element shall be used by a server whenever ComplexData output is

returned in an execute response document.

b One and only one of these three items shall be included.

Table 47 — Parts of ComplexData data structure

Name Definition Data type Multiplicity

mimeType Uses Format data structure, see Table 4 Character String type Zero or one (optional)

encoding URI type Zero or one (optional)

schema URL type Zero or one (optional)

(any) a Complex value to be used as input to
process

Any type One (mandatory)

a The complex value is embedded here as part of the ComplexData element, in the mimeType, encoding, and schema

indicated by the first three parameters if they exist, or by the relevant defaults.

Table 48 — Parts of LiteralData data structure

Name Definition Data type Multiplicity

dataType Identifier of data type of this literal
value

URI type Zero or one (optional) a

uom Identifier of unit of measure of this
literal numerical value

URI type Zero or one (optional) b

a This dataType should be included for each quantity whose value is not a simple string.

b Where the literal data has units of measure which are necessary to state, such as when measuring distances,

then that UoM shall be identified. When the literal data has no units then the UoM shall be omitted. This UOM

shall be one identified in the Process‘s SupportedUOMs for this input or output parameter.

OGC 05-007r7

36 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Table 49 — Parts of ResponseForm data structure

Name Definition Data type Multiplicity

Response
Document

Indicates that the outputs shall be
returned as part of a WPS
response document.

ResponseDocument data
structure, see Table 50

Zero or one
(conditional) a

RawData
Output

Indicates that the output shall be
returned directly as raw data,
without a WPS response
document.

RawDataOutput data
structure, see Table 52

Zero or one
(conditional) a

a One and only one of these two items shall be included.

Table 50 — Parts of ResponseDocument data structure

Name Definition Data type Multiplicity and use

store
Execute
Response

Indicates if the execute response
document shall be stored.

Boolean type Zero or one (optional)

Default is ―false‖ a

lineage Indicates if the Execute operation
response shall include the
DataInputs and OutputDefinitions
elements.

Boolean type Zero or one (optional)

Default is ―false‖ b

status Indicates if the stored execute
response document shall be
updated to provide ongoing reports
on the status of execution.

Boolean type Zero or one (optional)

Default is ―false‖ c

Output Definition of format, encoding, and
schema for output to be returned
from this process

DocumentOutputDefin
ition data structure,
see Table 51

One or more
(mandatory)

Include wherever non-
default output values
are requested d

a If "true" then the executeResponseLocation attribute in the execute response becomes mandatory, which will

point to the location where the executeResponseDocument is stored. The service shall respond immediately to the

request and return an executeResponseDocument as specified in section 10.3.1. The ―storeExecuteResponse‖

parameter value ―true‖ is recommended when a process takes a long time to execute. It is also recommended to

make service chaining more efficient when the output(s) are large. However, this parameter should not be

included unless the corresponding storeSupported parameter is included and is ―true‖ in the ProcessDescription

for this process.

b If lineage is "true" the server shall include in the execute response a complete copy of the DataInputs and

OutputDefinition elements as received in the execute request. If lineage is "false" then these elements shall be

omitted from the response.

c If status is "true" and storeExecuteResponse is "true", then the Status element of the execute response

document stored at executeResponseLocation is kept up to date by the process, as specified in section 10.3.1.

d This OutputDefinition shall be repeated for each Output that offers a choice of format, and the client wishes to

use one that is not identified as the default, and/or for each Output that the client wishes to customize the

descriptive information about the output.

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 37

Table 51 — Parts of DocumentOutputDefinition data structure

Name Definition Data type Multiplicity and use

mimeType Uses Format data structure, see
Table 4

Character String type Zero or one (optional)a

encoding URI type Zero or one (optional)a

schema URL type Zero or one (optional)a

uom Identifier of unit of measure
requested for this output

URI type Zero or one (optional)b

asReference Specifies if this output should be
stored by the process as a web-
accessible resource.

Boolean type Zero or one (optional)c

Default is ―false‖

Identifier Inherited from Description data
structure, see Table 1, applied to
an output

ows:CodeType One (mandatory)

Title Character string type Zero or one (optional) d

Abstract Character string type Zero or one (optional) e

a A Format can be referenced when a client chooses to specify a format other than the default Format

supported for a ComplexData output. This Format shall be a Format referenced for this output in the Process full

description.

b A uom can be referenced when a client chooses to specify one of the uoms supported for a LiteralData

output. This uom shall be a unit of measure referenced for this output in the Process full description.

c If asReference is "true", the server shall store this output so that the client can retrieve it as required. If store

is "false", all the output shall be encoded in the Execute operation response document. This parameter shall not

be included unless the corresponding "storeSupported" parameter is included and is "true" in the

ProcessDescription for this process.

d This element should be used if the client wishes to customize the Title in the execute response. This element

should not be used if the Title provided for this output in the ProcessDescription is adequate.

e This element should be used if the client wishes to customize the Abstract in the execute response. This

element should not be used if the Abstract provided for this output in the ProcessDescription is adequate.

Table 52 — Parts of RawDataOutput data structure

Name Definition Data type Multiplicity and use

Identifier Inherited from Description data
structure, see Table 1, applied to
an output

ows:CodeType One (mandatory) a

mimeType Uses Format data structure, see
Table 4

Character String type Zero or one (optional)

encoding URI type Zero or one (optional)

schema URL type Zero or one (optional)

uom Identifier of unit of measure
requested for this output

URI type Zero or one (optional)b

a A Format can be referenced when a client chooses to specify a format other than the default Format

supported for a ComplexData output. This Format shall be a Format referenced for this output in the Process full

description.

b A uom can be referenced when a client chooses to specify one of the uoms supported for a LiteralData

output. This uom shall be a unit of measure referenced for this output in the Process full description.

NOTE 5 The parameters listed in Table 52 above are a subset of those found in Table 51 above.

OGC 05-007r7

38 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

10.2.2 Execute HTTP GET request KVP encoding (optional)

Servers may implement HTTP GET transfer of the Execute operation request, using KVP

encoding. The KVP encoding of the Execute operation request shall use the parameters

specified in Table 53. The parameters listed in Table 53 shall be as specified in Table 39

above. KVP encoding is suitable for simple Execute requests. More complex requests

such as those which require the inclusion of embedded complex values should use the

XML encoding.

Table 53 — Execute operation request URL parameters

Name and example
 a Optionality and use Definition and format

service=WPS Mandatory Service type identifier

request=Execute Mandatory Operation name

version=1.0.0 Mandatory Specification and schema version for this operation

language=en-CA Optional Language identifier

Identifier=Buffer Mandatory Process identifier

DataInputs=
[Object=@xlink:href=
http%3A%2F%2Ffoo.
bar%2Ffoo;BufferDist
ance=100]

Optional, include when
one or more inputs
provided

List of identifiers, attributes, and values of inputs to
this process execution b

ResponseDocument=
[BufferedPolygon]

Optional, include when
a response document
is desired

List of identifiers and attributes of outputs from this
process execution b

RawDataOutput=
[BufferedPolygon]

Optional, include when
raw data output is
required and there is
only one output

Identifier and attributes of the output from this
process execution b

storeExecuteResponse=
true

Optional, include when
the response
document shall be
stored

Boolean value that specifies if the Execute
Response shall be stored as a web-accessible
resource, as per Table 50.

lineage=true Optional, include when
lineage information
shall be included in
the response

Boolean value that specifies if lineage information
shall be included in the response document, as per
Table 50.

status=true Optional, include when
status element shall
be updated in the
response

Boolean value that specifies if status information
shall be updated in the response document, as per
Table 50.

a All parameter names are here listed using mostly lower case letters. However, any parameter name
capitalization shall be allowed in KVP encoding, see Subclause 11.5.2 of [OGC 06-121r3].

b The value for this field shall be encoded as specified in section 10.2.2.1.

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 39

EXAMPLE An example Execute operation request using KVP encoding is:

http://foo.bar/foo?

request=Execute&

service=WPS&

version=1.0.0&

language=en-CA&

Identifier=Buffer&

DataInputs=Object=@xlink:href=http%3A%2F%2Ffoo.bar%2Ffoo;BufferDistance=10&

ResponseDocument=BufferedPolygon&

StoreExecuteResponse=true

10.2.2.1 Encoding of DataInput and Output values (mandatory)

Encoding of the DataInputs, ResponseDocument, and RawDataOutput value fields shall be as

follows:

1. A semicolon (;) shall be used to separate one input from the next

2. An equal sign (=) shall be used to separate an input name from its value and

attributes, and an attribute name from its value

3. An at symbol (@) shall be used to separate an input value from its attributes and

one attribute from another.

4. Field names and attribute names are case sensitive. Incorrect field names and

attribute names shall raise an InvalidParameterException.

5. Missing mandatory field names shall raise a MissingParameterValue.

6. All field values and attribute values shall be encoded using the standard Internet

practice for encoding URLs [IETF RFC 1738].

7. References using HTTP POST shall not be supported in the KVP encoding.

10.2.2.1.1 Execute DataInput parameter KVP syntax

The DataInput parameter‘s value, in a KVP Execute request, shall conform to the following

grammar (using EBNF (Extended Backus-Naur Form) notation [IETF RFC 2396]):

DataInputs := Input *(“;” Input)

Input := BoundingBox | Literal | Complex | Reference

BoundingBox := InputId “=” BoundingBoxValue

BoundingBoxValue := <As defined in OGC # 06-121r3 Subclause 10.2.3>

Literal := InputId “=” Value *(“@” LiteralAttribute)

LiteralAttribute := LiteralAttributeName “=” Value

LiteralAttributeName := “datatype” | “uom”

Complex := InputId “=” Value *(“@” ComplexAttribute)

ComplexAttribute:= ComplexAttributeName “=” Value

ComplexAttributeName := “mimetype” | “encoding” | “schema”

Reference := InputId “=” Value *(“@” ReferenceAttribute)

http://foo.bar/foo

OGC 05-007r7

40 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

ReferenceAttribute:= ReferenceAttributeName “=” Value

ReferenceAttributeName := “href” | ComplexAttributeName

InputId := <Identifier of the input from the process description>

Value := <URL Encoded value being sent>

These rules result in a KVP encoded request of the following form:

http://host:port/path?name=value...

 &Request=Execute

 &Identifier=ProcessName

 &DataInputs=fieldName=value@attributeName=value@...;nextFieldName=value...

Examples (for clarity the values are not URL encoded):

Literal Data example

width=35@datatype=xs:integer@uom=meter

BoundingBox Data example

bboxInput=46,102,47,103,urn:ogc:def:crs:EPSG:6.6:4326,2

Reference example

fieldName=xml@Format=text/xml@Encoding=utf-8@Schema=xsd@asReference=true

10.2.2.2 Chaining of requests using KVP (mandatory)

HTTP requests using KVP encoding shall support the chaining of requests whereby a call

to another web service is encoded within the value for a ComplexData href input.

Encoding of the entire request to the ComplexData href shall ensure that the request is

received and processed unambiguously.

WPS instances shall decode ComplexValueReference values and submit the decoded

value to the network as an HTTP KVP GET request.

An example of service chaining via KVP follows. Consider the following WPS Execute

request that provides a ComplexValueReference called complexFieldName to a process

called Buffer:

http://foo.bar.1/wps?version=1.0.0&request=Execute&service=WPS&Identifier=Buffe

r&DataInputs=BufferDistance=100@datatype=integer@uom=meter;Object=http%3A%2F%2

Ffoo%2Ebar%2E2%2Fwps%3Frequest%3DExecute%26service%3Dwps%26version%3D1%

2E0%2E0%26Identifier%3DShpConvertToGML%26DataInputs%3DcomplexFieldName%

3Dhttp%253A%252F%252Ffoo%252Ebar%252Fshapefile%40Format%3Dtext%2Fxml%40

Encoding%3Dutf%2D8%40Schema%3Dgml@Format=text/xml@Encoding=utf-8@Schema=xsd

Since complexFieldName is defined for ShpConvertToGML as a

ComplexValueReference, the WPS at foo.bar.1 shall decode the input

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 41

value (shown in grey), which results in the following URL, which it

shall submit to the Internet as an HTTP GET request:

http://foo.bar.2/wps?request=Execute&service=wps&version=1.0.0&Identifier=ShpCo

nvertToGML&DataInputs=complexFieldName=http%3A%2F%2Ffoo%2Ebar%2Fshapefile@Fo

rmat=text/xml@Encoding=utf-8@Schema=gml

Likewise, this ShpConvertToGML process contains a ComplexValueReference for

complexFieldName, so the WPS at foo.bar.2 shall decode the input value

http%3A%2F%2Ffoo%2Ebar%2Fshapefile, resulting in the following URL, which it

shall submit to the Internet as an HTTP GET request:

 http://foo.bar/shapefile

As indicated in this example, chaining requires increased re-encoding with each level of

the chain. The deeper the chain, the more complex the encoding in the request will be.

Service chaining via KVP is most suitable for chaining two or three simple processes

together. In deeper and more complex processes, the use of a workflow engine can

facilitate error handling and permit better control of the processing of the chain.

10.2.3 Execute HTTP POST request XML encoding (mandatory)

All WPS servers shall implement HTTP POST transfer of the Execute operation request,

using XML encoding only. The following schema fragment specifies the contents and

structure of an Execute operation request encoded in XML:

 wpsExecute_request.xsd

EXAMPLES: Some examples of an Execute operation request using XML encoding are:

 examples\50_wpsExecute_request_RawDataOutput.xml

 examples\51_wpsExecute_request_ResponseDocument.xml

 examples\52_wpsExecute_request_ResponseDocument.xml

10.3 Execute operation response

10.3.1 Execute response parameters

The form of the response to an Execute operation request depends on the value of the

―ResponseForm‖ parameter in the execute request.

In the most primitive case, when a response form of ―RawDataOutput‖ is requested,

process execution is successful, and only one complex output is produced, then the

Execute operation response will consist simply of that one complex output in its raw form

returned directly to the client. For example, if in the case where a WPS process creates

one GIF image as its output, that GIF image would be returned to the client as a direct

response to the Execute request.

../Local%20Settings/wpsExecute_request.xsd
../Local%20Settings/examples/50_wpsExecute_request_RawDataOutput.xml
../Local%20Settings/examples/51_wpsExecute_request_ResponseDocument.xml
../Local%20Settings/examples/52_wpsExecute_request_ResponseDocument.xml

OGC 05-007r7

42 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

In all other cases, the response to a valid Execute operation request is an

ExecuteResponse XML document. The contents of this ExecuteResponse document

depend upon the value of the Execute/ResponseForm/ResponseDocument element, as

follows.

If storeExecuteResponse is ―true‖ (see Table 50), then the execute response document

shall be stored at a web accessible URL. The executeResponseLocation attribute in the

execute response becomes mandatory, which will point to the location where the

Response Document is stored. The service shall respond immediately to the request by

 storing the ResponseDocument at a web accessible URL, as well as

 returning the ResponseDocument containing the executeResponseLocation to the

client.

The status element which has five possible subelements (choice):ProcessAccepted,

ProcessStarted, ProcessPaused, ProcessFailed and ProcessSucceeded, which are chosen

and populated as follows:

1. If the process is completed when the initial executeResponseDocument is

returned, the element ProcessSucceeded is populated with the process

results.

2. If the process already failed when the initial executeResponseDocument is

returned, the element ProcessFailed is populated with the Exception.

3. If the process has been paused when the initial executeResponseDocument

is returned, the element ProcessPaused is populated.

4. If the process has been accepted when the initial

executeResponseDocument is returned, the element ProcessAccepted is

populated, including percentage information.

5. If the process execution is ongoing when the initial

executeResponseDocument is returned, the element ProcessStarted is

populated.

In case 3, 4, and 5, if status updating is requested, updates are made to the

executeResponseDocument at the executeResponseLocation until either the process

completes successfully or it fails. Regardless, once the process completes successfully,

the ProcessSucceeded element is populated, and if it fails, the ProcessFailed element is

populated.

If lineage is ―true‖ (see Table 50), the Execute operation response shall include the

DataInputs and OutputDefinitions elements. The server shall include in the execute

response a complete copy of the DataInputs and OutputDefinition elements as received in

the execute request. If lineage is "false" then these elements shall be omitted from the

response.

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 43

If status is ―true‖ (see Table 50), the stored execute response document shall be updated

to provide ongoing reports on the status of execution. If status is "true" and

storeExecuteResponse is "true" (and the server has indicated that both storeSupported

and statusSupported are "true") then the Status element of the execute response document

stored at executeResponseLocation is kept up to date by the process. While the execute

response contains ProcessAccepted, ProcessStarted, or ProcessPaused, updates shall be

made to the executeResponse document until either the process completes successfully

(in which case ProcessSucceeded is populated), or the process fails (in which case

ProcessFailed is populated). If status is "false" then the Status element shall not be

updated until the process either completes successfully or fails. If status="true" and

storeExecuteResponse is "false" then the service shall raise an exception.

If storage of a ComplexData output has not been requested via the ―asReference‖

attribute (see Table 51), the ExecuteResponse document will contain that output. For

ComplexData such as images included in the ExecuteResponse document will be

encoded. If storage of a ComplexData output is requested, the ExecuteResponse will

reference the web-accessible resource where the output can be retrieved.

An ExecuteResponse document returned by the Execute operation shall include the parts

listed in Table 54 through Table 61. These tables also specify the UML model data type

plus the multiplicity and use of each listed part in the Execute operation response.

OGC 05-007r7

44 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

NOTE 1 The service parameter listed below is largely copied from Table 26 in Subclause 9.2.1 of [OGC
06-121r3]. The Identifier parameter is largely copied from Table 1 in Subclause 7.2 of this document. The
DataInpust and OutputDefinitions data structures are copied from Table 39 of this document.

Table 54 — Parts of ExecuteResponse data structure

Name Definition Data type and values Multiplicity and use

service Service Identifier Character String type, not
empty

Shall contain ―WPS‖

One (mandatory)

version Specification version for
operation

Character String type, not
empty

Value is specified by each
Implementation
Specification and Schemas
version

One (mandatory)

lang Language Identifier Character string type, not
empty

RFC4646 language code of
the human readable text

One (mandatory)

status
Location

Reference to location
where current
ExecuteResponse
document is stored

URL type Zero or one (optional)

Include when
storeExecuteResponse=
TRUE

service
Instance

GetCapabilities URL of
the WPS service which
was invoked

URL type One (mandatory)

Process Process description ProcessBrief data structure,
see Table 2

One (mandatory)

Status Execution status of this
process

Status data structure, see
Table 55

One (mandatory)

Provide ongoing updates
when status=TRUE

DataInputs List of inputs provided to
this process execution

DataInputs data structure, see
Table 40

Zero or one (optional)

Include if lineage=TRUE a

Output
Definitions

List of definitions of
outputs desired from
executing this process

OutputDefinitions data
structure, see Table 58

Zero or one (optional)

Include if lineage=TRUE b

Process
Outputs

List of values of outputs
from process execution

ProcessOutputs data
structure, see Table 59

Zero or one (optional)

Include when process
execution succeeded

a This DataInputs data structure can be requested to be included in the Execute response, so the client can

confirm that the request was received correctly, and to provide a source of metadata if the client wishes to store

the result for future reference.

b This OutputDefinitions data structure can be requested to be included in the Execute response, so the client

can confirm that the request was received correctly, and to provide a source of metadata if the client wishes to

store the result for future reference.

NOTE The UML class diagrams contained in Subclause C.6 provide a useful graphical view of the
contents of the ExecuteResponse listed in Table 54 throughTable 61.

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 45

Table 55 — Parts of Status data structure

Name Definition Data type and values Multiplicity

creationTime The time (UTC) that the process
finished. If the process has not
completed executing, this attribute
shall contain the creation time of this
document.

dateTime type One
(mandatory)

Process
Accepted

Indicates that process has been
accepted by server, but is in a queue
and has not yet started to execute

Character string type,
not empty b

Zero or one
(conditional) a

Process
Started

Indicates that process has been
accepted by server, and processing
has begun

Character string type,
not empty b

Uses attributes identified
in the ProcessStarted
data structure, see
Table 56

Zero or one
(conditional) a

Process
Paused

Indicates that the server has paused the
process.

Character string type,
not empty b

Uses attributes identified
in the ProcessStarted
data structure, see
Table 56

Zero or one
(conditional) a

Process
Succeeded

Indicates that process has successfully
completed execution

Character string type,
not empty c

Zero or one
(conditional) a

ProcessFailed Indicates that execution of this process
has failed, and includes error
information d

ProcessFailed data
structure, see Table 57

Zero or one
(conditional) a

a One and only one of these four elements can be present

b The contents of this human-readable text string is left open to definition by each server, but is expected to

include any messages the server wishes to let the clients know. Such information could include how long the

queue is, or any warning conditions that may have been encountered. The client may display this text to a human

user.

c The contents of this human-readable text string is left open to definition by each server, but is expected to

include any messages the server wished to let the clients know, such as how long the process took to execute, or

any warning conditions that may have been encountered. The client may display this text string to a human user.

The client should use the presence of this parameter to trigger automated or manual access to the results of process

execution. If manual access is intended, the client should use the presence of this parameter to present the results

as downloadable links to the user.

d If a process fails for some reason, the implementation raises an error and places it in the exception report

included in this ProcessFailed structure. The reason(s) for failure is given in the exception report.

OGC 05-007r7

46 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Table 56 — Parts of ProcessStarted data structure

Name Definition Data type and values Multiplicity and use

percent
Completed

Percentage of process that has been
completed, where 0 means the
process has just started, and 99
means the process is almost
complete. This value is expected
to be accurate to within ten percent

Integer type

Values from 0 to 99,
inclusive

Zero or one (optional)

Include for processes
expected to take a
long time a

a Recommended for use when more than a minute will elapse between request and response. Note that when

percentCompleted reaches 100, the ProcessSucceeded element shall be used.

Table 57 — Parts of ProcessFailed data structure

Name Definition Data type Multiplicity

Exception
Report

Exception report containing one or more
Exception data structures, each signalling
detection of an independent error

ExceptionReport data
structure, see Table
23 in OGC 06-
121r3

One (mandatory)

Table 58 — Parts of OutputDefinitions data structure

Name Definition Data type Multiplicity and use

Output Definition of an output
from Execute request

DocumentOutputDefinition
data structure, see Table 51

One or more (mandatory)

Include one for each
output, unordered.

Table 59 — Parts of ProcessOutputs data structure

Name Definition Data type Multiplicity and use

Output Value of output from
process execution

OutputData data structure, see
Table 60

One or more (mandatory)

Include one for each
output, unordered. a

a It is only necessary to include outputs when the status is ProcessSucceeded.

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 47

Table 60 — Parts of OutputData data structure

Name Definition Data type Multiplicity and use

Identifier Inherited from
Description data
structure, see Table 1,
applied to an output

ows:CodeType One (mandatory)

Title Character string type One (mandatory)

Abstract Character string type Zero or one (optional)

Reference Indicates that the output
is available as a web-
accessible reference

OutputReference data
structure, see Table 61

Zero or one (conditional) a

Data Indicates that the output
is directly embedded in
the execute response
document.

DataType data structure, see
Table 46

Zero or one (conditional) a

a One and only one of these two elements shall be present.

Table 61 — Parts of OutputReference data structure

Name Definition Data type Multiplicity and Use

format Format data structure, see Table 4 Character String
type

Zero or one (optional)

encoding URI type Zero or one (optional)

schema URL type Zero or one (optional)

href Reference to a web-accessible resource
that is provided by the process as
output. This attribute shall contain a
URL from which this output can be
electronically retrieved.

URL type One (mandatory)

Once a process has completed successfully, the Status data structure shall include the

ProcessSucceeded parameter, and the ProcessOutputs data structure shall be fully

populated. If the Execute request indicates asReference=―true‖ for an output, that output

shall be stored as web-accessible resource which is indicated using

/ExecuteResponse/ProcessOutputs/Output/Reference@href, as shown in this example XML

fragment:

 <Reference href="http://foo.bar/foo.xml"/>

If the Execute request indicates status=―true‖, the status portion of the Execute Response

document shall be updated, specifically the information described in Table 56.

If the URL indicated in statusLocation is accessed before the process has had time to

complete and populate the online resource, the server shall return an HTTP Error 404

(Not Found).

The Execute Response document normally contains the input that was provided by the

client, in the DataInputs and OutputDefinitions data structures. This information includes

any URIs provided in the execute request. If an input was embedded in the request, then

OGC 05-007r7

48 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

the server may generate and populate a URL for the payload and reference it, instead of

returning a copy of the original payload in the body of the ExecuteResponse. This is

recommended in the case of large files.

The WPS is not specifically designed to store outputs for a long time, but it does not

preclude such storage either. Clients may wish to download the outputs to some other

web-accessible location if long term storage is required.

10.3.2 Execute response XML encoding

The following schema specifies the contents and structure of an Execute operation

response, always encoded in XML:

 wpsExecute_response.xsd

EXAMPLE: For the Execute operation request example given in the earlier example:

 examples\52_wpsExecute_request_ResponseDocument.xml

 an example response is:

 examples\62_wpsExecute_response.xml

This example response includes the statusLocation as an attribute of the
<ExecuteResponse>. This attribute contains a URL that will return an ExecuteResponse
document, which contains the latest status information about the Execute request, and, if
the process has completed, the URL at which the ―BufferedPolygon‖ output may be
retrieved. If the process has not completed by the time the response is sent, the location of
the output will not necessarily be identified. In this example, because the execute request
also specifies status=‖true‖, the URL at which the Response Document is located will be
populated when the response document is first returned to the client, and the status
portion of the Response Document at this URL shall be repopulated on a regular basis
until processing is complete, at which time the location of the output will be identified.

10.3.3 Execute exceptions

When a WPS server encounters an error while performing an Execute operation, it shall

return an exception report message as specified in Subclause 8 of [OGC 06-121r3]. The

allowed standard exception codes shall include those listed in Table 62. For each listed

exceptionCode, the contents of the ―locator‖ parameter value shall be as specified in

Table 62.

../Local%20Settings/wpsExecute_response.xsd
../Local%20Settings/examples/52_wpsExecute_request_ResponseDocument.xml
../Local%20Settings/examples/62_wpsExecute_response.xml

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 49

NOTE To reduce the need for readers to refer to other documents, the first four values listed below are
copied from Table 25 in Subclause 8.3 of [OGC 06-121r3].

Table 62 — Exception codes for Execute operation

exceptionCode value Meaning of code “locator” value

MissingParameterValue Operation request does not include a parameter
value, and this server did not declare a default
value for that parameter

Name of missing
parameter

InvalidParameterValue Operation request contains an invalid parameter
value

Name of parameter
with invalid value

NoApplicableCode No other exceptionCode specified by this service
and server applies to this exception

Omit ―locator‖
parameter or
specify the vendor
specific exception
code

NotEnoughStorage The server does not have enough space available
to store the inputs and outputs associated with
the request.

None, omit ―locator‖
parameter

ServerBusy The server is too busy to accept and queue the
request at this time.

None, omit ―locator‖
parameter

FileSizeExceeded The file size of one of the input parameters was
too large for this process to handle.

Identifer of the
parameter which
exceeded the
maximum file size.

StorageNotSupported Execute operation request included store=‖true‖,
bot storage is not offered by this server.

None, omit ―locator‖
parameter

VersionNegotiationFailed Service version for a ComplexData xlink:href
input was not supported by the referenced
server, and version negotiation failed.

Identifier of the Input
which could not be
accessed

If the client requests the use of a format for an input/output that is not supported by the

implementation (i.e. identified in the Process Description), the implementation shall raise

an InvalidParameterValue error. The exception‘s locator shall name the parameter and

its description shall indicate that the requested format is not supported.

If an input identified by a client does not match the schema identified for that input, the

implementation shall raise an InvalidParameterValue error. The exception‘s locator shall

name the parameter and its description shall specify it as an XML schema fault.

EXAMPLE: An example exception response to the Execute operation request is:

 examples\90_wpsExceptionReport.xml

../Local%20Settings/examples/90_wpsExceptionReport.xml

OGC 05-007r7

50 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Annex A
(normative)

Abstract test suite

EDITOR‘S NOTE This annex is currently a first draft largely copied from OWS Common,
and needs to be further customized and reviewed.

A.1 Introduction

Each OWS Implementation Specification is required to include an abstract test suite

annex before it is submitted to ISO/TC 211. This abstract test suite specifies at a high

level how server and client implementations of that specification shall be tested for

conformance to the WPS specification. The framework for such abstract test suites is

specified in ISO 19105: Geographic information – Conformance and testing, especially

Clauses 7 and 9.

An abstract test suite contains multiple abstract tests, grouped into one or more test

modules. This abstract test suite consists of three top-level test modules:

a) Client test module – Abstract tests for checking conformance of client

implementations with the requirements of this specification that are normatively

referenced by an OWS Implementation Specification

b) Server test module – Abstract tests for checking conformance of server

implementations with the requirements of this specification that are normatively

referenced by an OWS Implementation Specification

Any of these modules could contain lower-level test modules. At this time, only the

Server test module contains lower-level test modules, named:

a) All operations implemented test module – Abstract tests for checking server

properties that are common to all operations implemented

b) GetCapabilities operation test module – Abstract tests for checking server properties

that are specific to the GetCapabilities operation

c) Other operations responses – Abstract tests for checking server properties that apply

to all operations except GetCapabilities

In the client and server test modules, all operations specified and implemented shall be

tested, including both HTTP GET and HTTP POST transfer of each operation request. In

the specification test module, all operations specified shall be checked, including GET

and POST transfers of operation requests. And all operation request and response

parameters specified or implemented shall be tested. Of course, some operations, transfer

methods, and parameters are specified as optional implementation by servers. Any

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 51

optional item not implemented by a server shall not be tested. Also, items not

implemented by a client shall not be tested.

A.2 Client test module

A.2.1 GetCapabilities operation request

a) Test Purpose: Verify that a client satisfies all requirements for a GetCapabilities

operation request.

b) Test Method: Generate an adequate sample of GetCapabilities operation requests

from the client, and verify that each is a valid request.

c) Reference: 8.2

d) Test Type: Basic

A.2.1 DescribeProcess operation request

a) Test Purpose: Verify that a client satisfies all requirements for a DescribeProcess

operation request.

b) Test Method: Generate an adequate sample of DescribeProcess operation requests

from the client, and verify that each is a valid request.

c) Reference: 9.2

d) Test Type: Basic

A.2.2 Execute operation request

a) Test Purpose: Verify that a client satisfies all requirements on each operation request

other than the Execute operation.

b) Test Method: Generate an adequate sample of Execute operation requests from the

client, and verify that each is a valid request.

c) Reference: 10.2

d) Test Type: Basic

A.3 Server test module

A.4.1 All operations implemented test module

A.4.1.1 HTTP protocol usage

a) Test purpose: Verify that the rules and conventions governing the use of HTTP are

observed.

b) Test method: Check that the server responds to HTTP requests. Verify that the server

accepts and responds to valid and invalid requests according to HTTP standards.

OGC 05-007r7

52 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

c) Reference: RFC 2616 (Hypertext Transfer Protocol -- HTTP/1.1). See

<http://www.ietf.org/rfc/rfc2616>.

d) Test type: Capability

A.4.1.2 HTTP response status code

a) Test purpose: Verify that a service request which generates an exception produces a

response that contains 1) a service exception report, and 2) a status code indicating an

error.

b) Test method: Check the response code in the Status-Line and the message body. Pass

if the response code is either 4xx (Client error) or 5xx (Server error) and the body

contains a service exception report. Fail otherwise.

c) Reference: RFC 2616, Section 11.

d) Test type: Capability

A.4.2 GetCapabilities operation test module

A.4.2.1 Accept HTTP GET transferred KVP GetCapabilities operation request

a) Test Purpose: Verify that a server accepts at least HTTP GET transferred requests for

the GetCapabilities operation.

b) Test Method: Submit KVP-encoded GetCapabilities and other operation requests

containing parameter names using various cases and combinations of cases, with a

variety of parameter sequences. Verify that the server provides the same response

when the same parameter names use different cases and combinations of cases.

c) Reference: 7.3

d) Test Type: Capability

A.4.2.2 Accept HTTP POST transferred XML GetCapabilities operation request

e) Test Purpose: Verify that a server accepts at HTTP POST transferred requests for the

GetCapabilities operation if advertised in the GetCapabilities Response.

f) Test Method: Submit XML-encoded GetCapabilities and other operation requests

containing parameters using correct and incorrect name capitalizations and parameter

sequences and contents. Verify that the server accepts all correct requests, and returns

ExceptionReport messages for all incorrect requests.

g) Reference: 8.2.2

h) Test Type: Capability

A.4.2.3 GetCapabilities operation response

a) Test Purpose: Verify that a server satisfies all requirements on the GetCapabilities

operation response.

http://www.ietf.org/rfc/rfc2616

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 53

b) Test Method: Make several GetCapabilities requests including a variety of input

parameters. Verify that the specified correct response is returned to each request.

c) Reference: 8.3

d) Test Type: Capability

A.4.2.4 Version negotiation

a) Test Purpose: Verify that a server satisfies the requirements for version negotiation.

b) Test Method: Submit GetCapabilities operation requests containing version numbers

lower than, higher than, and equal to the version supported by the server. Verify that

the server responses are in accord with the specified rules for version negotiation.

c) Reference: 8.2

d) Test Type: Capability

A.4.2.5 Handling updateSequence parameter

a) Test Purpose: Verify that a server satisfies the requirements for generating and using

the updateSequence parameter, if the server implements the AcceptFormats request

parameter.

b) Test Method: Submit GetCapabilities operation requests containing correct and

incorrect values of the AcceptFormats parameter. Verify that the server provides the

specified correct response to each request.

c) Reference: 8.2

d) Test Type: Capability

A.4.2.6 Language selection

a) Test Purpose: Verify that a server satisfies the requirements for using the Language

parameter.

b) Test Method: Submit GetCapabilities operation requests containing various values

and combinations of values of the Language parameter. Verify that the server

provides the specified correct response to each request

c) Reference: 8.2

d) Test Type: Capability

A.4.3 DescribeProcess operation test module

A.4.3.1 Accept DescribeProcess HTTP GET transferred operation requests

a) Test Purpose: Verify that a server accepts at least HTTP GET transferred requests for

the DescribeProcess operation.

OGC 05-007r7

54 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

b) Test Method: Submit HTTP GET transferred requests for the DescribeProcess

operation. Verify that the server accepts and responds to these requests as specified

and implemented.

c) Reference: 9.2.2

d) Test Type: Capability

A.4.3.2 Accept DescribeProcess HTTP POST transferred operation requests

a) Test Purpose: Verify that a server accepts at HTTP POST transferred requests for the

DescribeProcess operation.

b) Test Method: Submit HTTP POST transferred requests for the DescribeProcess

operation. Verify that the server accepts and responds to these requests as specified

and implemented.

c) Reference: 9.2.3

d) Test Type: Capability

A.4.3.3 DescribeProcess operation response

a) Test Purpose: Verify that a server satisfies all requirements on the DescribeProcess

operation response.

b) Test Method: Make several DescribeProcess requests including a variety of input

parameters. Ensure requests include inputs and outputs that consist of ComplexData,

LiteralData, and Bounding Box data. Verify that the specified correct response is

returned to each request.

c) Reference: 9.3

d) Test Type: Capability

A.4.3.4 Language selection

a) Test Purpose: Verify that a server satisfies the requirements for using the Language

parameter for the DescribeProcess operation.

b) Test Method: Submit DescribeProcess operation requests containing various values

and combinations of values of the Language parameter. Verify that the server

provides the specified correct response to each request

c) Reference:

d) Test Type: Capability

A.4.4 Execute operation test module

A.4.4.1 Accept Execute HTTP GET transferred Execute operation requests

a) Test Purpose: Verify that a server accepts HTTP GET transferred requests for the

Execute operation, if advertised in the GetCapabilities Response.

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 55

b) Test Method: Submit HTTP GET transferred requests for the Execute operation.

Verify that the server accepts and responds to these requests as specified and

implemented.

c) Reference: 10.2.2

d) Test Type: Capability

A.4.3.2 Accept Execute HTTP POST transferred operation requests

a) Test Purpose: Verify that a server accepts at HTTP POST transferred requests for the

Execute operation.

b) Test Method: Submit HTTP POST transferred requests for the Execute operation.

Verify that the server accepts and responds to these requests as specified and

implemented.

c) Reference: 10.2.3

d) Test Type: Capability

A.4.3.3 Execute operation response: raw data output

a) Test Purpose: Verify that a server satisfies all requirements on the Execute operation

response for raw data output.

b) Test Method: Make several Execute requests including a variety of input parameters.

Ensure requests include inputs and outputs that consist of ComplexData, LiteralData,

and Bounding Box data. Verify that the specified correct response is returned to each

request.

c) Reference: Error! Reference source not found.

d) Test Type: Capability

A.4.3.4 Execute operation response: response document

e) Test Purpose: Verify that a server satisfies all requirements on the Execute operation

response for response document output.

f) Test Method: Make several Execute requests including a variety of input parameters.

Ensure requests include inputs and outputs that consist of ComplexData, LiteralData,

and Bounding Box data. Ensure requests include inputs and outputs that are

embedded and referenced. Verify that the specified correct response is returned to

each request.

g) Reference: 10.3.2

h) Test Type: Capability

A.4.3.5 Execute operation response: updating of response document

i) Test Purpose: Verify that a server updates the Execute operation response document

(if supported as indicated by the statusSupported attribute).

OGC 05-007r7

56 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

j) Test Method: Submit an Execute requests that takes a significant amount of time to

process, and ensure that the stored Execute response document is maintained

correctly.

k) Reference: 10.3.2

l) Test Type: Capability

A.4.3.6 Language selection

a) Test Purpose: Verify that a server satisfies the requirements for using the Language

parameter for the Execute operation.

b) Test Method: Submit Execute operation requests containing various values and

combinations of values of the Language parameter. Verify that the server provides the

specified correct response to each request

c) Reference:

d) Test Type: Capability

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 57

Annex B
(normative)

XML Schema Documents

In addition to this document, this specification includes normative XML Schema Document

files. The WPS-specific XML Schema Documents are posted online at the URL

http://schemas.opengis.net/wps/1.0.0. These XML Schema Documents are also bundled with

the present document. In the event of a discrepancy between the bundled and online versions

of the XML Schema files, the online files shall be considered authoritative.

The WPS abilities now specified in this document use a set of XML Schema Documents,

all included in the zip file with this document. These XML Schema Documents combine

the XML schema fragments listed in various subclauses of this document, eliminating

duplications. These XML Schema Documents are named:

wpsAll.xsd (complete WPS package)

wpsDescribeProcess_request.xsd

wpsDescribeProcess_response.xsd

wpsExecute_request.xsd

wpsExecute_response.xsd

wpsGetCapabilities_request.xsd

wpsGetCapabilities_response.xsd

common/DescriptionType.xsd

common/ProcessBriefType.xsd

common/ProcessVersion.xsd

common/RequestBaseType.xsd

common/ResponseBaseType.xsd

common/WSDL.xsd

These XML Schema Documents use and build on the OWS Common XML Schema

Documents specified in [OGC 06-121r3] and named:

ows19115subset.xsd

owsCommon.xsd

owsDataIdentification.xsd

owsDomainType.xsd

owsExceptionReport.xsd (slightly modified from owsExceptionReport.xsd)

OGC 05-007r7

58 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

owsGetCapabilitiesTypes.xsd (slightly modified from owsGetCapabilities.xsd)

owsOperationsMetadata.xsd

owsServiceIdentification.xsd

owsServiceProvider.xsd

In order to validate properly, two OWS Common schema files were modified as indicated

above. For this reason, all of the OWS Common schema files are also included in the zip

file with this document.

All these XML Schema Documents contain documentation of the meaning of each

element and attribute, and this documentation shall be considered normative as specified

in Subclause 11.6.3 of [OGC 06-121r3].

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 59

Annex C
(informative)

UML model

C.1 Introduction

This annex provides a UML model of the WPS interface, using the OGC/ISO profile of

UML summarized in Subclause 5.2 of [OGC 06-121r3].

Figure C.1 is a simple UML diagram summarizing the WPS interface. This class diagram

shows that the WPService class inherits the getCapabilities operation from the

OGCWebService interface class, and adds the ―describeProcess‖ and ―execute‖

operations. (This capitalization of names uses the OGC/ISO profile of UML.)

OGCWebService {Abstract}

+ getCapabilities(request : GetCapabilities) : ServiceMetadata

(from OWS Get Capabi lites)

<<Interface>>

Each server instance instantiates only one object of this class,

and this object always exists while server is available.

WPService

+ describeProcess(request : DescribeProcess) : ProcessDescriptions

+ execute(request : Execute) : ExecuteResponse

Figure C.1 — WPS interface UML diagram

Each of the three operations uses a request and a response data type, each of which is

defined by one or more additional UML classes. The following subclauses provide a

more complete UML model of the WPS interface, adding UML classes defining the

operation request and response data types.

OGC 05-007r7

60 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

C.2 UML packages

The WPS interface UML model is organized in four packages:

 WPS Service

 WPS Get Capabilities

 WPS Describe Process, and

 WPS Execute.

These four WPS-specific packages make direct use of four OWS Common packages,

named OWS Get Capabilities, ISO 19115 Subset, OWS Common, and OWS Domain.

Each of the four WPS-specific packages identified above is described in the following

subclauses. The OWS Get Capabilities, OWS Common, OWS Operations Metadata,

OWS Service Identification, OWS Service Provider, and ISO 19115 Subset packages are

described in Annex C of [OGC 06-121r3].

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 61

C.3 WPS Service package

The WPS Service package is shown in the class diagram in Figure C.3. This diagram

does not show the classes used by the WPS operation requests and responses, which are

shown (with part of this package) in the WPS Get Capabilities, Describe Process, and

Execute packages. This diagram also shows four used classes from other packages. The

WPSDescription and ProcessBrief classes introduced by this package are further defined

by Table 1 and Table 2 in this document.

RequestBase {Abstract}
(from OWS Get Capabilities)

+ service : CharacterString

+ request : CharacterString

+ version : CharacterString

WPSRequestBase {Abstract}

+ service : CharacterString = "WPS" {frozen}

+ lang : CharacterString

Code
(from ISO 19115 Subset)

+ code : CharacterString

+ codespace : URI

WPSDescription

+ title : CharacterString

+ abstract [0..1] : CharacterString

ProcessBrief

+ processVersion : CharacterString

+ profile [0..*] : URI

Metadata {Abstract}
(from OWS Common)

+ metadata [0..1] : Any

+ link [0..1] : URL

+ about [0..1] : URI

WSDL

+ href : URL

<<DataType>

ComplexDataCombination

+ mimeType : CharacterString

+ encoding [0..1] : CharacterString

+ schema [0..1] : URI

0..* 0..*

+metadata

0..1

0..1 +wsdl

+identifier 1

1

<<DataType>>

Title

+ lang : CharacterString

<<Datatype>>

Abstract

+ lang : CharacterString

Figure C.3 — WPS Service package class diagram

OGC 05-007r7

62 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

C.4 WPS Get Capabilities package

The WPS Get Capabilities package is shown in the class diagram in Figure C.4. This

diagram also shows many classes from the other packages, with gray fill.

<<Interface>>

OWS Web Service {Abstract}
(from OWS Get Capabilities Types)

+ getCapabilities(request : GetCapabilities) : ServiceMetadata

CapabilitiesBase {Abstract}
(from OWS Get Capabilities)

+ version : CharacterString

+ updateSequence [0..1] : CharacterString

ProcessOfferings

+ title : CharacterString

+ abstract [0..1] : CharacterString

GetCapabilities {Abstract}
(from OWS Get Capabilities)

+ service : CharacterString

+ request : CharacterString = “GetCapabilities {frozen}

+ acceptVersions [0..1] : Sequence<CharacterString>

WPSGetCapabilities

+ service : CharacterString = “WPS” {frozen}

ServiceIdentification
(from OWS Service Indentification)

OperationsMetadata
(from OWS Operations Metadata)

ServiceProvider
(from OWS Service Provider)

+ serviceProvider 0..1

+ operationsMetadata 0..1

+ serviceIdentification 0..1

11 1

1

+ processBrief 1..*
ProcessBrief

(from WPS Service)

Figure C.4 — WPS Get Capabilities package class diagram

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 63

C.5 WPS Describe Process package

The Describe Process package is shown in the class diagrams in Figures C.5 and C.6.

These diagrams also show many classes from the other packages, with gray fill. The

classes introduced by this package are further defined by Table 13 through Table 37 in

this document.

RequestBase {Abstract}
(from OWS Get Capabilities)

+ service : CharacterString

+ request : CharacterString

+ version : CharacterString

WPSRequestBase {Abstract}
(from WPS Service)

+ service : CharacterString = "WPS" {frozen}

+ lang : CharacterString

DescribeProcess

Code
(from ISO 19115 subset)

11

1 + identifier

<<Interface>>

OWS Web Service {Abstract}
(from OWS Get Capabilities Types)

+ getCapabilities(request : GetCapabilities) : ServiceMetadata

WPService
(from WPS Service)

+ describeProcess(request : DescribeProcess) : ProcessDescriptions

+ execute(request : Execute) : ExecuteResponse

ProcessBrief
(from WPS Service)

ProcessDescriptions

ResponseBase {Abstract}
(from WPS Service)

+ service : CharacterString = “WPS” {frozen}

+ version : CharacterString = “1.0.0” {frozen}

+ lang : CharacterString

ProcessDescription

+ storeSupported [0..1] : Boolean = false

+ statusSupported [0..1] : Boolean = false

1

+ processVersion 1..*

DataInputs

InputDescription

+ minOccurs : nonNegativeInteger

+ maxOccurs : positiveInteger

<<union>>

InputFormChoice

+ complexData : SupportedComplexDataInput

+ literalData : LiteralData

+ boundingBoxData : SupportedCRSs

+ input 1..*

1

1

1

+ dataInputs 1..*

WPS Description
(from WPS Service)

+ inputFormChoice 1..*

ProcessOutputs

1

1..* + processOutputs

OutputDescription

+ output 1..*

1

1

+ outputFormChoice 1..*

<<union>>

OutputFormChoice

+ complexOutput : SupportedComplexData

+ literalOutput : LiteralOutput

+ boundingBoxOutput : SupportedCRSs

Figure C.5 — Describe Process package class diagram, part 1

OGC 05-007r7

64 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

<<DataType>>

LiteralOutput

DataType
(from OWS Domain)

<<DataType>

SupportedUOMs

Supported

UOM
(from OWS Domain)

Default

+ uom [1] : UOM

0..* 0..1

+datatype

0..1 +UOMs1

1

+ supported 1+ default 1

1

<<DataType>>

LiteralInput

DefaultValue

1

+ literalValuesChoice 1..*

<<union>>

LiteralValuesChoice

+ allowedValues : AllowedValues

+ anyValue : AnyValue

+ valuesReference : ValuesReference

AllowedValues
(from OWS Domain)

AnyValue
(from OWS Domain)

<<datatype>>

ValuesReference

+ reference [0..1] : URI

+ valuesForm [0..1] : URI

0..*

0..1 +defaultValue

+ uom [1..*] : UOM

Figure C.6 — Describe Process package class diagram, part 2

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 65

<<DataType>

SupportedCRSs

SupportedDefault

+ CRS : URI

1

+ supported 1+ default 1

1

+ CRS [1..*] : URI

<<DataType>

SupportedComplexData

SupportedDefault

+ format : ComplexDataCombination

1

+ supported 1+ default 1

1

<<DataType>

SupportedComplexDataInput

+ maximumMegabytes : integer

ComplexDataCombination

(from WPS Service)

+ format : ComplexDataCombination

Figure C.7 — Describe Process package class diagram, part 3

OGC 05-007r7

66 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

C.6 WPS Execute package

The Execute package is shown in the class diagrams in Figures C.8, C.9 and C.10. These

diagrams also show many classes from the other packages, with gray fill. The classes

introduced by this package are further defined by Table 39 through Table 61 in this

document.

WPService

(from WPS Service)

+ describeProcess(request : DescribeProcess) : ProcessDescriptions

+ execute(request : Execute) : ExecuteResponse

RequestBase {Abstract}

(from OWS Get Capabilities)

+ service : CharacterString

+ request : CharacterString

+ version : CharacterString

WPSRequestBase {Abstract}

(from WPS Service)

+ service : CharacterString = "WPS" {frozen}

+ lang : CharacterString

Code

(from ISO 19115 subset)

Execute

DataInputs

1 +identifier

1

Input

+ title : CharacterString

+ abstract : CharacterString

Code

(from ISO 19115 subset)

1 +identifier

1

1..* + literalValuesChoice

<<union>>

InputDataFormChoice

+ reference : InputReference

+ data : Data

0..1 + dataInputs

0..*

1

1..* + input

1

0..1 + responseForm

0..*

<<union>>

ResponseForm

+ responseDocument : ResponseDocument

+ rawDataOutput : RawDataOutput

ExecuteResponse

ResponseBase {Abstract}

(from WPS Service)

+ service : CharacterString = “WPS” {frozen}

+ version : CharacterString = “1.0.0” {frozen}

+ lang : CharacterString

+ serviceInstance : URL

+ statusLocation [0..1] : URL

+ status : Status

+ outputDefinitions [0..1] : OutputDefinitions

+ processOutputs [0..1] : ProcessOutputs

The Execute

Response is not

returned in one

case specified

in the text

1 + dataInputs

1

ProcessBrief

(from WPS Service)

Figure C.8 — Execute package class diagram, part 1

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 67

As indicated by the note in Figure C.7, the response to an Execute operation request is

not the ExecuteResponse document in one special case. When RawDataOutput is

requested, no ExecuteResponse XML document is returned or stored.

<<DataType>>

InputReference

+ href : URL

+ method [0..1] : CharacterString

+ mimeType [0..1] : CharacterString

+ encoding [0..1] : URI

+ schema [0..1] : URI

<<DataType>>

Data

<<DataType>>

ResponseDocument

+ storeExecuteResponse [0..1] : Boolean = false

+ lineage [0..1] : Boolean = false

+ status [0..1] : Boolean = false
<<DataType>>

RawDataOutput

Header

+ key : CharacterString

+ value : CharacterString

Any

+ body

BodyReference

+ href : URL

0..1 + header

0..*

ComplexData

+ mimeType [0..1] : CharacterString

+ encoding [0..1] : URI

+ schema [0..1] : URI

+ complexData

LiteralData

+ dataType [0..1] : URI

+ uom [0..1] : URI+ bodyReference

+ literalData

BoundingBoxData

(from OWS Common)

+ boundingBoxData

+ lowerCorner : Sequence<Number>

+ upperCorner : Sequence<Number>

+ crs [0..1] : URI

+ dimensions [0..1] : PositiveInteger

Any

DocumentOutputDefinition

+ uom [0..1] : URI

+ mimeType [0..1] :CharacterString

+ encoding [0..1] : URI

+ schema [0..1] : URI

+ asReference [0..1] : Boolean = False

+ title [0..1] : Title

+ abstract [0..1] : Abstract

+output 1..*

+identifier

1

OutputDefinition

+ uom [0..1] : URI

+ mimeType [0..1] :CharacterString

+ encoding [0..1] : URI

+ schema [0..1] : URI

+output 1

+identifier 1

1

Code

(from ISO 19115 subset)
1

1

<<DataType>>

OutputDefinitions

1

Figure C.9 — Execute package class diagram, part 2

OGC 05-007r7

68 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

<<Union>>

Status

+ processAccepted : CharacterString

+ processStarted : ProcessStarted

+ processPaused : ProcessPaused

+ processSucceeded : CharacterString

+ processFailed : ProcessFailed

<<DataType>>

ProcessOutputs

ProcessStarted

+ processStarted : CharacterString

+ percentCompleted [0..1] : Integer

ProcessPaused

+ processPaused : CharacterString

+ percentCompleted [0..1] : Integer

ProcessFailed

+ exceptionReport : ExceptionReport

OutputData

+ title : Title

+ abstract : Abstract

Code

(from ISO 19115 subset)

1 +identifierMetadata {Abstract}
(from OWS Common)

+ metadata [0..1] : Any

+ link [0..1] : URL

+ about [0..1] : URI
0..* 0..*

+metadata
0..1

1..* + Output

1

<<DataType>>

Data

<<DataType>>

OutputReference

+ href : URL

+ mimeType [0..1] : CharacterString

+ encoding [0..1] : URI

+ schema [0..1] : URI

+data+reference

Figure C.10 — Execute package class diagram, part 3

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 69

Annex D
(normative)

Use of WPS with SOAP

D.1 Overview

This annex specifies how WPS shall be used with SOAP.

D.2 SOAP encoding of WPS requests and responses

WPS requests and responses encoded in SOAP shall use SOAP document-style encoding

(also called message-style or document-literal encoding), as described in [OWS 06-094],

for the following operations:

 GetCapabilities request

 GetCapabilities response

 DescribeProcess request

 DescribeProcess response

 Execute response when status=true

An example for a DescribeProcess request follows:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <soap:Body>

<DescribeProcess service="WPS" version="1.0.0"

xmlns="http://www.opengeospatial.net/wps"

xmlns:ows="http://www.opengeospatial.net/ows"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.opengeospatial.net/wps

..\wpsDescribeProcess.xsd">

 <ows:Identifier>intersection</ows:Identifier>

 <ows:Identifier>union</ows:Identifier>

</DescribeProcess>

 </soap:Body>

</soap:Envelope>

WPS execute requests encoded in SOAP shall be encoded as follows:

 the process name shall be turned into an element in the SOAP body by pre-

pending the text "ExecuteProcess_"

OGC 05-007r7

70 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

 each input and output shall be encoded as an element in the SOAP body by using

the Identifier as the name of the element.

An example for an Execute request follows.

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <soap:Body>

 <ExecuteProcess_GMLBuffer

xmlns="http://wpsint.tigris.org/soap/SpatialAnalysis">

<GmlUrlResource>http://onotta499199/gml/polygon_gml.xml</GmlUrlResource>

 <Distance>10</Distance>

 </ExecuteProcess_GMLBuffer>

 </soap:Body>

</soap:Envelope>

SOAP requests to execute a process when RawDataOutput is requested shall generate a

SOAP error.

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 71

Annex E
(informative)

WSDL best practices

E.1 Overview

This annex indicates best practices for how to implement WSDL support for WPS.

E.2 WSDL document for the entire service

A WSDL document that describes the whole WPS service (i.e. including the

GetCapabilities and DescribeProcess operations) should be made available as follows:

 http://hostname/WPSname?WSDL

Where

 http://hostname/WPSname? is the root of the HTTP requests to the WPS (e.g.

GetCapabilities).

E.3 WSDL document for specific processes

In addition to implementing WSDL for the entire service, it is also useful to create a

separate WSDL document for each individual process that can be executed. Such

documents should be made available as follows:

 http://hostname/WPSname/identifier[/service.soap]?WSDL

Where

 identifier is the Identifier of the WPS process.

 [/service.soap] is optional. When present,

http://hostname/WPSname/identifier/[service.soap]? indicates the root of the

HTTP SOAP requests to the WPS. and the service shall return a WSDL that

describes the SOAP binding for that WPS process.

Note that the use of "?WSDL" is in keeping with general practice for retrieving WSDL

documents. Supporting both an overall WSDL document as well as separate WSDL

documents for each process, facilitates discovery of the WPS service including the

GetCapabilities and DescribeProcess operations, and yet makes it possible to register/find

individual WPS processes separately.

OGC 05-007r7

72 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

 E.4 WSDL example for a complete service

 ..\examples\example_service.wsdl

../Local%20Settings/examples/example_service.wsdl

OGC 05-007r7

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 73

Bibliography

[1] OGC 06-121r3, OpenGIS® Web Service Common Implementation Specification

version 1.1.0 with Corrigendum 1, at

http://portal.opengeospatial.org/files/?artifact_id=20040

[2] OGC 06-094, OWS Common change request: Add SOAP encoding, at

http://portal.opengeospatial.org/files/?artifact_id=16086

http://portal.opengeospatial.org/files/?artifact_id=20040
http://portal.opengeospatial.org/files/?artifact_id=16086

	Scope
	Conformance
	Normative references
	Terms and definitions
	Conventions
	Abbreviated terms
	UML notation
	Used parts of other documents
	Platform-neutral and platform-specific specifications

	WPS overview
	WPS Operations
	Generic nature of WPS
	Middleware nature of WPS
	WPS Profiles
	Service chaining with WPS
	WPS and SOAP/WSDL

	Shared aspects
	Introduction
	Shared data structures
	Operation request encoding

	GetCapabilities operation (mandatory)
	Introduction
	GetCapabilities operation request
	HTTP GET request using KVP encoding (mandatory)
	GetCapabilities HTTP POST request using XML encoding (optional)

	GetCapabilities operation response
	Normal response
	OperationsMetadata section contents
	ProcessOfferings section
	Languages section
	WSDL section
	Capabilities document XML encoding
	GetCapabilities exceptions

	DescribeProcess operation (mandatory)
	Introduction
	DescribeProcess operation request
	DescribeProcess request parameters
	DescribeProcess HTTP GET request KVP encoding (mandatory)
	DescribeProcess HTTP POST request XML encoding (optional)

	DescribeProcess operation response
	DescribeProcess response parameters
	DescribeProcess response XML encoding
	DescribeProcess exceptions

	Execute operation (mandatory)
	Introduction
	Execute operation request
	Execute request parameters
	Execute HTTP GET request KVP encoding (optional)
	Encoding of DataInput and Output values (mandatory)
	Execute DataInput parameter KVP syntax

	Chaining of requests using KVP (mandatory)

	Execute HTTP POST request XML encoding (mandatory)

	Execute operation response
	Execute response parameters
	Execute response XML encoding
	Execute exceptions

